Search results
Results from the WOW.Com Content Network
Millimetre of water (US spelling millimeter of water) [3] is a unit of pressure. It may be defined as the pressure exerted by a column of water of 1 mm in height at 4 °C (temperature of maximum density) at the standard acceleration of gravity, so that 1 mmH 2 O (4 °C) = 999.9720 kg/m 3 × 9.80665 m/s 2 × 1 mm = 9.8063754138 Pa ≈ 9.80638 Pa, but conventionally a nominal maximum water ...
Precipitable water is the depth of water in a column of the atmosphere, if all the water in that column were precipitated as rain. As a depth, the precipitable water is measured in millimeters or inches. Often abbreviated as "TPW", for Total Precipitable Water.
So if a water column meter reads "13.6 cm H 2 O", then an equivalent measurement is "1.00 cm Hg". This example demonstrates why there is some confusion surrounding pressure head and its relationship to pressure. Scientists frequently use columns of water (or mercury) to measure pressure (manometric pressure measurement), since for a given fluid ...
It is defined as the pressure exerted by a column of water of 1 inch in height at defined conditions. At a temperature of 4 °C (39.2 °F) pure water has its highest density (1000 kg/m 3). At that temperature and assuming the standard acceleration of gravity, 1 inAq is approximately 249.082 pascals (0.0361263 psi). [2]
The average water pressure acting against a dam depends on the average depth of the water and not on the volume of water held back. For example, a wide but shallow lake with a depth of 3 m (10 ft) exerts only half the average pressure that a small 6 m (20 ft) deep pond does.
This means that a much shorter column is needed compared to water. [2] For instance, the pressure represented by a column of 100 mm of water is just under 7.4 mm of mercury . [3] The pressure is determined by measuring the difference in height between the reference column and the column connected to the item under test.
Turner angle assesses the vertical stability, indicating the density of the water column changes with depth. The density is generally related to potential temperature and salinity profile: the cooler and saltier the water is, the denser it is. As the light water overlays on the dense water, the water column is stably stratified.
The (oceanic) water column is a concept used in oceanography to describe the physical (temperature, salinity, light penetration) and chemical (pH, dissolved oxygen, nutrient salts) characteristics of seawater at different depths for a defined geographical point.