enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Coupon collector's problem - Wikipedia

    en.wikipedia.org/wiki/Coupon_collector's_problem

    In probability theory, the coupon collector's problem refers to mathematical analysis of "collect all coupons and win" contests. It asks the following question: if each box of a given product (e.g., breakfast cereals) contains a coupon, and there are n different types of coupons, what is the probability that more than t boxes need to be bought ...

  3. Newton–Pepys problem - Wikipedia

    en.wikipedia.org/wiki/Newton–Pepys_problem

    The Newton–Pepys problem is a probability problem concerning the probability of throwing sixes from a certain number of dice. [1] In 1693 Samuel Pepys and Isaac Newton corresponded over a problem posed to Pepys by a school teacher named John Smith. [2] The problem was: Which of the following three propositions has the greatest chance of success?

  4. Bertrand's box paradox - Wikipedia

    en.wikipedia.org/wiki/Bertrand's_box_paradox

    The probability of drawing another gold coin from the same box is 0 in (a), and 1 in (b) and (c). Thus, the overall probability of drawing a gold coin in the second draw is ⁠ 0 / 3 ⁠ + ⁠ 1 / 3 ⁠ + ⁠ 1 / 3 ⁠ = ⁠ 2 / 3 ⁠. The problem can be reframed by describing the boxes as each having one drawer on each of two sides. Each ...

  5. Boy or girl paradox - Wikipedia

    en.wikipedia.org/wiki/Boy_or_Girl_paradox

    The Boy or Girl paradox surrounds a set of questions in probability theory, which are also known as The Two Child Problem, [1] Mr. Smith's Children [2] and the Mrs. Smith Problem. The initial formulation of the question dates back to at least 1959, when Martin Gardner featured it in his October 1959 " Mathematical Games column " in Scientific ...

  6. Bertrand paradox (probability) - Wikipedia

    en.wikipedia.org/wiki/Bertrand_paradox_(probability)

    The Bertrand paradox is a problem within the classical interpretation of probability theory. Joseph Bertrand introduced it in his work Calcul des probabilités (1889) [1] as an example to show that the principle of indifference may not produce definite, well-defined results for probabilities if it is applied uncritically when the domain of possibilities is infinite.

  7. Category:Probability problems - Wikipedia

    en.wikipedia.org/wiki/Category:Probability_problems

    Pages in category "Probability problems" The following 31 pages are in this category, out of 31 total. This list may not reflect recent changes. B. Balls into bins ...

  8. Bertrand's ballot theorem - Wikipedia

    en.wikipedia.org/wiki/Bertrand's_ballot_theorem

    The variant problem can be solved by the reflection method in a similar way to the original problem. The number of possible vote sequences is ( p + q q ) {\displaystyle {\tbinom {p+q}{q}}} . Call a sequence "bad" if the second candidate is ever ahead, and if the number of bad sequences can be enumerated then the number of "good" sequences can ...

  9. Millennium Prize Problems - Wikipedia

    en.wikipedia.org/wiki/Millennium_Prize_Problems

    The Clay Mathematics Institute officially designated the title Millennium Problem for the seven unsolved mathematical problems, the Birch and Swinnerton-Dyer conjecture, Hodge conjecture, Navier–Stokes existence and smoothness, P versus NP problem, Riemann hypothesis, Yang–Mills existence and mass gap, and the Poincaré conjecture at the ...