Search results
Results from the WOW.Com Content Network
Scalar–tensor–vector gravity (STVG) [1] is a modified theory of gravity developed by John Moffat, a researcher at the Perimeter Institute for Theoretical Physics in Waterloo, Ontario. The theory is also often referred to by the acronym MOG ( MO dified G ravity ).
Tensor–vector–scalar gravity (TeVeS), [1] developed by Jacob Bekenstein in 2004, is a relativistic generalization of Mordehai Milgrom's Modified Newtonian dynamics (MOND) paradigm. [2] [3] The main features of TeVeS can be summarized as follows: As it is derived from the action principle, TeVeS respects conservation laws;
Brans–Dicke theory is a scalar-tensor theory, not a scalar theory, meaning that it represents the gravitational interaction using both a scalar field and a tensor field. We mention it here because one of the field equations of this theory involves only the scalar field and the trace of the stress–energy tensor, as in Nordström's theory.
These are scalar–tensor theories of gravitation. The field theoretical start of General Relativity is given through the Lagrange density. It is a scalar and gauge invariant (look at gauge theories) quantity dependent on the curvature scalar R. This Lagrangian, following Hamilton's principle, leads to the field equations of Hilbert and ...
This led Moffat to propose metric-skew-tensor-gravity (MSTG), [5] in which a skew symmetric tensor field postulated as part of the gravitational action. A newer version of MSTG, in which the skew symmetric tensor field was replaced by a vector field, is scalar–tensor–vector gravity (STVG).
The graviton must be a spin-2 boson because the source of gravitation is the stress–energy tensor, a second-order tensor (compared with electromagnetism's spin-1 photon, the source of which is the four-current, a first-order tensor). Additionally, it can be shown that any massless spin-2 field would give rise to a force indistinguishable from ...
In physics, the Brans–Dicke theory of gravitation (sometimes called the Jordan–Brans–Dicke theory) is a competitor to Einstein's general theory of relativity.It is an example of a scalar–tensor theory, a gravitational theory in which the gravitational interaction is mediated by a scalar field as well as the tensor field of general relativity.
These equations, together with the geodesic equation, [8] which dictates how freely falling matter moves through spacetime, form the core of the mathematical formulation of general relativity. The EFE is a tensor equation relating a set of symmetric 4 × 4 tensors. Each tensor has 10 independent components.