Ad
related to: chinese algebra equation solver
Search results
Results from the WOW.Com Content Network
Furthermore, they gave the processes for square and cubed root extraction, which eventually was applied to solving quadratic equations up to the third order. [5] Both texts also made substantial progress in Linear Algebra, namely solving systems of equations with multiple unknowns. [15] The value of pi is taken to be equal to three in both ...
It is the basis for solving higher-order equations in ancient China, and it also plays an important role in the development of mathematics. [9] The "equations" discussed in the Fang Cheng chapter are equivalent to today's simultaneous linear equations. The solution method called "Fang Cheng Shi" is best known today as Gaussian elimination.
Fangcheng (sometimes written as fang-cheng or fang cheng) (Chinese: 方程; pinyin: fāngchéng) is the title of the eighth chapter of the Chinese mathematical classic Jiuzhang suanshu (The Nine Chapters on the Mathematical Art) composed by several generations of scholars who flourished during the period from the 10th to the 2nd century BC.
The Mathematical Treatise in Nine Sections (simplified Chinese: 数书九章; traditional Chinese: 數書九章; pinyin: Shùshū Jiǔzhāng; Wade–Giles: Shushu Chiuchang) is a mathematical text written by Chinese Southern Song dynasty mathematician Qin Jiushao in the year 1247. The mathematical text has a wide range of topics and is taken ...
The Chinese remainder theorem is widely used for computing with large integers, as it allows replacing a computation for which one knows a bound on the size of the result by several similar computations on small integers. The Chinese remainder theorem (expressed in terms of congruences) is true over every principal ideal domain.
Zhu also found square and cube roots by solving quadratic and cubic equations, and added to the understanding of series and progressions, classifying them according to the coefficients of the Pascal triangle. He also showed how to solve systems of linear equations by reducing the matrix of their coefficients to diagonal form.
This treatise covered a variety of topics including indeterminate equations and the numerical solution of certain polynomial equations up to 10th order, as well as discussions on military matters and surveying. In the treatise Qin included a general form of the Chinese remainder theorem that used Da yan shu (大衍术) or algorithms to solve it ...
The Chisanbop system. When a finger is touching the table, it contributes its corresponding number to a total. Chisanbop or chisenbop (from Korean chi (ji) finger + sanpŏp (sanbeop) calculation [1] 지산법/指算法), sometimes called Fingermath, [2] is a finger counting method used to perform basic mathematical operations.
Ad
related to: chinese algebra equation solver