Search results
Results from the WOW.Com Content Network
The cross product with respect to a right-handed coordinate system. In mathematics, the cross product or vector product (occasionally directed area product, to emphasize its geometric significance) is a binary operation on two vectors in a three-dimensional oriented Euclidean vector space (named here ), and is denoted by the symbol .
Cross product – also known as the "vector product", a binary operation on two vectors that results in another vector. The cross product of two vectors in 3-space is defined as the vector perpendicular to the plane determined by the two vectors whose magnitude is the product of the magnitudes of the two vectors and the sine of the angle ...
This also relates to the handedness of the cross product; the cross product transforms as a pseudovector under parity transformations and so is properly described as a pseudovector. The dot product of two vectors is a scalar but the dot product of a pseudovector and a vector is a pseudoscalar, so the scalar triple product (of vectors) must be ...
The following are important identities in vector algebra.Identities that only involve the magnitude of a vector ‖ ‖ and the dot product (scalar product) of two vectors A·B, apply to vectors in any dimension, while identities that use the cross product (vector product) A×B only apply in three dimensions, since the cross product is only defined there.
Vector algebra relations — regarding operations on individual vectors such as dot product, cross product, etc. Vector calculus identities — regarding operations on vector fields such as divergence, gradient, curl, etc.
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
1 The cross product. 2 The cap product. 3 The slant product. 4 The cup product. 5 See also. 6 References. Toggle the table of contents. Products in algebraic topology ...
Enjoy a classic game of Hearts and watch out for the Queen of Spades!