enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Bragg's law - Wikipedia

    en.wikipedia.org/wiki/Bragg's_law

    The angles that Bragg's law predicts are still approximately right, but in general there is a lattice of spots which are close to projections of the reciprocal lattice that is at right angles to the direction of the electron beam. (In contrast, Bragg's law predicts that only one or perhaps two would be present, not simultaneously tens to hundreds.)

  3. Bragg plane - Wikipedia

    en.wikipedia.org/wiki/Bragg_plane

    Ray diagram of Von Laue formulation. In physics, a Bragg plane is a plane in reciprocal space which bisects a reciprocal lattice vector, , at right angles. [1] The Bragg plane is defined as part of the Von Laue condition for diffraction peaks in x-ray diffraction crystallography.

  4. Reciprocal lattice - Wikipedia

    en.wikipedia.org/wiki/Reciprocal_lattice

    Reciprocal space (also called k-space) provides a way to visualize the results of the Fourier transform of a spatial function. It is similar in role to the frequency domain arising from the Fourier transform of a time dependent function; reciprocal space is a space over which the Fourier transform of a spatial function is represented at spatial frequencies or wavevectors of plane waves of the ...

  5. Miller index - Wikipedia

    en.wikipedia.org/wiki/Miller_index

    This is based on the fact that a reciprocal lattice vector (the vector indicating a reciprocal lattice point from the reciprocal lattice origin) is the wavevector of a plane wave in the Fourier series of a spatial function (e.g., electronic density function) which periodicity follows the original Bravais lattice, so wavefronts of the plane wave ...

  6. Brillouin zone - Wikipedia

    en.wikipedia.org/wiki/Brillouin_zone

    The first Brillouin zone is the locus of points in reciprocal space that are closer to the origin of the reciprocal lattice than they are to any other reciprocal lattice points (see the derivation of the Wigner–Seitz cell). Another definition is as the set of points in k-space that can be reached from the origin without crossing any Bragg plane.

  7. X-ray crystal truncation rod - Wikipedia

    en.wikipedia.org/wiki/X-ray_crystal_truncation_rod

    Two examples of this are shown in Fig. 3. In the case of a miscut at an angle , a second set of rods is produced in reciprocal space called superlattice rods, tilted from the regular lattice rods by the same angle, . The X-ray intensity is strongest in the region of intersection between the lattice rods (grey bars) and superlattice rods (black ...

  8. Laue equations - Wikipedia

    en.wikipedia.org/wiki/Laue_equations

    This means that X-rays are seemingly "reflected" off parallel crystal lattice planes perpendicular at the same angle as their angle of approach to the crystal with respect to the lattice planes; in the elastic light (typically X-ray)-crystal scattering, parallel crystal lattice planes perpendicular to a reciprocal lattice vector for the crystal ...

  9. Linear inequality - Wikipedia

    en.wikipedia.org/wiki/Linear_inequality

    A linear programming problem seeks to optimize (find a maximum or minimum value) a function (called the objective function) subject to a number of constraints on the variables which, in general, are linear inequalities. [6] The list of constraints is a system of linear inequalities.