enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Cantor's diagonal argument - Wikipedia

    en.wikipedia.org/wiki/Cantor's_diagonal_argument

    Georg Cantor published this proof in 1891, [1] [2]: 20– [3] but it was not his first proof of the uncountability of the real numbers, which appeared in 1874. [ 4 ] [ 5 ] However, it demonstrates a general technique that has since been used in a wide range of proofs, [ 6 ] including the first of Gödel's incompleteness theorems [ 2 ] and ...

  3. Principia Mathematica - Wikipedia

    en.wikipedia.org/wiki/Principia_Mathematica

    G. H. Hardy, A Mathematician's Apology (1940) He [Russell] said once, after some contact with the Chinese language, that he was horrified to find that the language of Principia Mathematica was an Indo-European one. John Edensor Littlewood, Littlewood's Miscellany (1986) The Principia Mathematica (often abbreviated PM) is a three-volume work on the foundations of mathematics written by ...

  4. Square root of 2 - Wikipedia

    en.wikipedia.org/wiki/Square_root_of_2

    The square root of 2 (approximately 1.4142) is the positive real number that, when multiplied by itself or squared, equals the number 2. It may be written in mathematics as 2 {\displaystyle {\sqrt {2}}} or 2 1 / 2 {\displaystyle 2^{1/2}} .

  5. Mathematical fallacy - Wikipedia

    en.wikipedia.org/wiki/Mathematical_fallacy

    In mathematics, certain kinds of mistaken proof are often exhibited, and sometimes collected, as illustrations of a concept called mathematical fallacy.There is a distinction between a simple mistake and a mathematical fallacy in a proof, in that a mistake in a proof leads to an invalid proof while in the best-known examples of mathematical fallacies there is some element of concealment or ...

  6. Mathematical proof - Wikipedia

    en.wikipedia.org/wiki/Mathematical_proof

    Then P(n) is true for all natural numbers n. For example, we can prove by induction that all positive integers of the form 2n − 1 are odd. Let P(n) represent " 2n − 1 is odd": (i) For n = 1, 2n − 1 = 2 (1) − 1 = 1, and 1 is odd, since it leaves a remainder of 1 when divided by 2. Thus P(1) is true.

  7. Perron–Frobenius theorem - Wikipedia

    en.wikipedia.org/wiki/Perron–Frobenius_theorem

    Perron–Frobenius theorem. In matrix theory, the Perron–Frobenius theorem, proved by Oskar Perron (1907) and Georg Frobenius (1912), asserts that a real square matrix with positive entries has a unique eigenvalue of largest magnitude and that eigenvalue is real. The corresponding eigenvector can be chosen to have strictly positive components ...

  8. Euclid's theorem - Wikipedia

    en.wikipedia.org/wiki/Euclid's_theorem

    Paul Erdős gave a proof [11] that also relies on the fundamental theorem of arithmetic. Every positive integer has a unique factorization into a square-free number r and a square number s 2. For example, 75,600 = 2 4 3 3 5 2 7 1 = 21 ⋅ 60 2. Let N be a positive integer, and let k be the number of primes less than or equal to N. Call those ...

  9. De Moivre's formula - Wikipedia

    en.wikipedia.org/wiki/De_Moivre's_formula

    In mathematics, de Moivre's formula (also known as de Moivre's theorem and de Moivre's identity) states that for any real number x and integer n it is the case that where i is the imaginary unit (i2 = −1). The formula is named after Abraham de Moivre, although he never stated it in his works. [1] The expression cos x + i sin x is sometimes ...