enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Larmor precession - Wikipedia

    en.wikipedia.org/wiki/Larmor_precession

    The Larmor frequency is important in NMR spectroscopy. The gyromagnetic ratios, which give the Larmor frequencies at a given magnetic field strength, have been measured and tabulated. [3] Crucially, the Larmor frequency is independent of the polar angle between the applied magnetic field and the magnetic moment direction.

  3. Gyromagnetic ratio - Wikipedia

    en.wikipedia.org/wiki/Gyromagnetic_ratio

    This relationship also explains an apparent contradiction between the two equivalent terms, gyromagnetic ratio versus magnetogyric ratio: whereas it is a ratio of a magnetic property (i.e. dipole moment) to a gyric (rotational, from Greek: γύρος, "turn") property (i.e. angular momentum), it is also, at the same time, a ratio between the ...

  4. Earth's field NMR - Wikipedia

    en.wikipedia.org/wiki/Earth's_field_NMR

    The geomagnetic field strength and hence precession frequency varies with location and time. Larmor precession frequency = magnetogyric ratio x magnetic field Proton magnetogyric ratio = 42.576 Hz/μT (also written 42.576 MHz/T or 0.042576 Hz/nT) Earth's magnetic field: 30 μT near Equator to 60 μT near Poles, around 50 μT at mid-latitudes.

  5. Relaxation (NMR) - Wikipedia

    en.wikipedia.org/wiki/Relaxation_(NMR)

    Taking for example the H 2 O molecules in liquid phase without the contamination of oxygen-17, the value of K is 1.02×10 10 s −2 and the correlation time is on the order of picoseconds = s, while hydrogen nuclei 1 H at 1.5 tesla precess at a Larmor frequency of approximately 64 MHz (Simplified. BPP theory uses angular frequency indeed).

  6. Larmor formula - Wikipedia

    en.wikipedia.org/wiki/Larmor_formula

    The Larmor formula can only be used for non-relativistic particles, which limits its usefulness. The Liénard-Wiechert potential is a more comprehensive formula that must be employed for particles travelling at relativistic speeds. In certain situations, more intricate calculations including numerical techniques or perturbation theory could be ...

  7. Chemical shift - Wikipedia

    en.wikipedia.org/wiki/Chemical_shift

    The operating (or Larmor) frequency of a magnet (usually quoted as absolute value in MHz) is calculated from the Larmor equation [4] =, where B 0 is the induction of the magnet (SI units of tesla), and is the magnetogyric ratio of the nucleus — an empirically measured fundamental constant determined by the details of the structure of each nucleus.

  8. Nucleon magnetic moment - Wikipedia

    en.wikipedia.org/wiki/Nucleon_magnetic_moment

    The Larmor frequency can be determined from the product of the gyromagnetic ratio with the magnetic field strength. Since for the neutron the sign of γ n is negative, the neutron's spin angular momentum precesses counterclockwise about the direction of the external magnetic field.

  9. Nuclear magnetic moment - Wikipedia

    en.wikipedia.org/wiki/Nuclear_magnetic_moment

    These g-factors may be multiplied by 7.622 593 285 (47) MHz/T, [7] which is the nuclear magneton divided by the Planck constant, to yield Larmor frequencies (in MHz/T). If divided instead by the reduced Planck constant, which is 2π less, a gyromagnetic ratio expressed in radians is obtained, which is greater by a factor of 2π.