Search results
Results from the WOW.Com Content Network
In quantum physics, a wave function (or wavefunction) is a mathematical description of the quantum state of an isolated quantum system. The most common symbols for a wave function are the Greek letters ψ and Ψ (lower-case and capital psi , respectively).
If the wavefunction is represented as (,) = (,) ((,)), where (,) is a real function which represents the complex phase of the wavefunction, then the probability flux is calculated as: = Hence, the spatial variation of the phase of a wavefunction is said to characterize the probability flux of the wavefunction.
In the generalized version of the Bloch theorem, the Fourier transform, i.e. the wave function expansion, gets generalized from a discrete Fourier transform which is applicable only for cyclic groups, and therefore translations, into a character expansion of the wave function where the characters are given from the specific finite point group.
Since the only wavefunction that can have lowest position-momentum uncertainty, , is a gaussian wavefunction, and since the coherent state wavefunction has minimum position-momentum uncertainty, we note that the general gaussian wavefunction in quantum mechanics has the form: (′) = ^ (′ ^ ) (′ ^ ).
The concept of wavefunction collapse was introduced by Werner Heisenberg in his 1927 paper on the uncertainty principle, "Über den anschaulichen Inhalt der quantentheoretischen Kinematik und Mechanik", and incorporated into the mathematical formulation of quantum mechanics by John von Neumann, in his 1932 treatise Mathematische Grundlagen der ...
In the quantum field theory of (as example) a quantum scalar field ^ (), in complete analogy with the one-particle quantum harmonic oscillator, the eigenstate of this quantum field with the "classical field" () as its eigenvalue,
Therefore, physicists have developed mathematical techniques to simplify these problems and clarify what is happening physically. One such technique is to apply a unitary transformation to the Hamiltonian. Doing so can result in a simplified version of the Schrödinger equation which nonetheless has the same solution as the original.
The derivation in three dimensions is the same, except the gradient operator del is used instead of one partial derivative. In three dimensions, the plane wave solution to Schrödinger's equation is: = and the gradient is = + + = (+ +) = where e x, e y, and e z are the unit vectors for the three spatial dimensions, hence ^ =