Search results
Results from the WOW.Com Content Network
A coordinate system conversion is a conversion from one coordinate system to another, with both coordinate systems based on the same geodetic datum. Common conversion tasks include conversion between geodetic and earth-centered, earth-fixed ( ECEF ) coordinates and conversion from one type of map projection to another.
Geodetic latitude and geocentric latitude have different definitions. Geodetic latitude is defined as the angle between the equatorial plane and the surface normal at a point on the ellipsoid, whereas geocentric latitude is defined as the angle between the equatorial plane and a radial line connecting the centre of the ellipsoid to a point on the surface (see figure).
The Earth-centered, Earth-fixed coordinate system (acronym ECEF), also known as the geocentric coordinate system, is a cartesian spatial reference system that represents locations in the vicinity of the Earth (including its surface, interior, atmosphere, and surrounding outer space) as X, Y, and Z measurements from its center of mass.
Let (x, y, z) be the standard Cartesian coordinates, and (ρ, θ, φ) the spherical coordinates, with θ the angle measured away from the +Z axis (as , see conventions in spherical coordinates). As φ has a range of 360° the same considerations as in polar (2 dimensional) coordinates apply whenever an arctangent of it is taken. θ has a range ...
The function is case insensitive Lat/Long to Ordnance Survey conversion is at bottom of file, see further authorship there]] local oscoord = {} local getArgs = require ('Module:Arguments'). getArgs local yesno = require ('Module:Yesno') local namespace = mw. title. getCurrentTitle (). namespace local pow = math.pow local sqrt = math.sqrt local ...
A geodetic datum or geodetic system (also: geodetic reference datum, geodetic reference system, or geodetic reference frame, or terrestrial reference frame) is a global datum reference or reference frame for unambiguously representing the position of locations on Earth by means of either geodetic coordinates (and related vertical coordinates) or geocentric coordinates. [1]
The inverse problem for earth sections is: given two points, and on the surface of the reference ellipsoid, find the length, , of the short arc of a spheroid section from to and also find the departure and arrival azimuths (angle from true north) of that curve, and . The figure to the right illustrates the notation used here.
A geographic coordinate system (GCS) is a spherical or geodetic coordinate system for measuring and communicating positions directly on Earth as latitude and longitude. [1] It is the simplest, oldest and most widely used type of the various spatial reference systems that are in use, and forms the basis for most others.