enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Delta-v - Wikipedia

    en.wikipedia.org/wiki/Delta-v

    Delta-v (more known as " change in velocity "), symbolized as and pronounced deltah-vee, as used in spacecraft flight dynamics, is a measure of the impulse per unit of spacecraft mass that is needed to perform a maneuver such as launching from or landing on a planet or moon, or an in-space orbital maneuver. It is a scalar that has the units of ...

  3. Tsiolkovsky rocket equation - Wikipedia

    en.wikipedia.org/wiki/Tsiolkovsky_rocket_equation

    A rocket's required mass ratio as a function of effective exhaust velocity ratio. The classical rocket equation, or ideal rocket equation is a mathematical equation that describes the motion of vehicles that follow the basic principle of a rocket: a device that can apply acceleration to itself using thrust by expelling part of its mass with high velocity and can thereby move due to the ...

  4. Pendulum (mechanics) - Wikipedia

    en.wikipedia.org/wiki/Pendulum_(mechanics)

    The change in velocity for a given change in height can be expressed as =. Using the arc length formula above, this equation can be rewritten in terms of dθ / dt : v = ℓ d θ d t = 2 g h , so d θ d t = 2 g h ℓ , {\displaystyle {\begin{aligned}v=\ell {\frac {d\theta }{dt}}&={\sqrt {2gh}},\quad {\text{so}}\\{\frac {d\theta }{dt}}&={\frac ...

  5. Equations for a falling body - Wikipedia

    en.wikipedia.org/wiki/Equations_for_a_falling_body

    Equations for a falling body. A set of equations describing the trajectories of objects subject to a constant gravitational force under normal Earth -bound conditions. Assuming constant acceleration g due to Earth’s gravity, Newton's law of universal gravitation simplifies to F = mg, where F is the force exerted on a mass m by the Earth’s ...

  6. Equations of motion - Wikipedia

    en.wikipedia.org/wiki/Equations_of_motion

    The first general equation of motion developed was Newton's second law of motion. In its most general form it states the rate of change of momentum p = p(t) = mv(t) of an object equals the force F = F(x(t), v(t), t) acting on it, [13] : 1112. The force in the equation is not the force the object exerts.

  7. Jerk (physics) - Wikipedia

    en.wikipedia.org/wiki/Jerk_(physics)

    Dimension. L T−3. In physics, jerk (also known as jolt) is the rate of change of an object's acceleration over time. It is a vector quantity (having both magnitude and direction). Jerk is most commonly denoted by the symbol j and expressed in m/s 3 ( SI units) or standard gravities per second ( g0 /s).

  8. Impulse (physics) - Wikipedia

    en.wikipedia.org/wiki/Impulse_(physics)

    F is the resultant force applied, t 1 and t 2 are times when the impulse begins and ends, respectively, m is the mass of the object, v 2 is the final velocity of the object at the end of the time interval, and; v 1 is the initial velocity of the object when the time interval begins. Impulse has the same units and dimensions (MLT −1) as momentum.

  9. Delta-v (physics) - Wikipedia

    en.wikipedia.org/wiki/Delta-v_(physics)

    Delta-. v. (physics) In general physics, delta-v is a change in velocity. The Greek uppercase letter Δ (delta) is the standard mathematical symbol to represent change in some quantity. Depending on the situation, delta- v can be either a spatial vector (Δ v) or a scalar (Δ v ). In either case it is equal to the acceleration (vector or scalar ...