enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Delta-v - Wikipedia

    en.wikipedia.org/wiki/Delta-v

    Delta-v (also known as " change in velocity "), symbolized as and pronounced deltah-vee, as used in spacecraft flight dynamics, is a measure of the impulse per unit of spacecraft mass that is needed to perform a maneuver such as launching from or landing on a planet or moon, or an in-space orbital maneuver. It is a scalar that has the units of ...

  3. Equations of motion - Wikipedia

    en.wikipedia.org/wiki/Equations_of_motion

    The first general equation of motion developed was Newton's second law of motion. In its most general form it states the rate of change of momentum p = p(t) = mv(t) of an object equals the force F = F(x(t), v(t), t) acting on it, [13]: 1112. The force in the equation is not the force the object exerts.

  4. Acceleration - Wikipedia

    en.wikipedia.org/wiki/Acceleration

    In mechanics, acceleration is the rate of change of the velocity of an object with respect to time. Acceleration is one of several components of kinematics, the study of motion. Accelerations are vector quantities (in that they have magnitude and direction). [ 1 ][ 2 ] The orientation of an object's acceleration is given by the orientation of ...

  5. Tsiolkovsky rocket equation - Wikipedia

    en.wikipedia.org/wiki/Tsiolkovsky_rocket_equation

    The classical rocket equation, or ideal rocket equation is a mathematical equation that describes the motion of vehicles that follow the basic principle of a rocket: a device that can apply acceleration to itself using thrust by expelling part of its mass with high velocity and can thereby move due to the conservation of momentum. It is ...

  6. Equations for a falling body - Wikipedia

    en.wikipedia.org/wiki/Equations_for_a_falling_body

    The first equation shows that, after one second, an object will have fallen a distance of 1/2 × 9.8 × 1 2 = 4.9 m. After two seconds it will have fallen 1/2 × 9.8 × 2 2 = 19.6 m; and so on. On the other hand, the penultimate equation becomes grossly inaccurate at great distances. If an object fell 10 000 m to Earth, then the results of both ...

  7. Velocity - Wikipedia

    en.wikipedia.org/wiki/Velocity

    Velocity is a physical vector quantity: both magnitude and direction are needed to define it. The scalar absolute value (magnitude) of velocity is called speed, being a coherent derived unit whose quantity is measured in the SI (metric system) as metres per second (m/s or m⋅s −1). For example, "5 metres per second" is a scalar, whereas "5 ...

  8. Jerk (physics) - Wikipedia

    en.wikipedia.org/wiki/Jerk_(physics)

    Jerk (also known as jolt) is the rate of change of an object's acceleration over time. It is a vector quantity (having both magnitude and direction). Jerk is most commonly denoted by the symbol j and expressed in m/s 3 (SI units) or standard gravities per second (g0 /s).

  9. Pendulum (mechanics) - Wikipedia

    en.wikipedia.org/wiki/Pendulum_(mechanics)

    The change in velocity for a given change in height can be expressed as =. Using the arc length formula above, this equation can be rewritten in terms of ⁠ dθ / dt ⁠ : v = ℓ d θ d t = 2 g h , so d θ d t = 2 g h ℓ , {\displaystyle {\begin{aligned}v=\ell {\frac {d\theta }{dt}}&={\sqrt {2gh}},\quad {\text{so}}\\{\frac {d\theta }{dt ...