Search results
Results from the WOW.Com Content Network
Multiple edges joining two vertices. In graph theory, multiple edges (also called parallel edges or a multi-edge), are, in an undirected graph, two or more edges that are incident to the same two vertices, or in a directed graph, two or more edges with both the same tail vertex and the same head vertex. A simple graph has no multiple edges and ...
A graph with three vertices and three edges. A graph (sometimes called an undirected graph to distinguish it from a directed graph, or a simple graph to distinguish it from a multigraph) [4] [5] is a pair G = (V, E), where V is a set whose elements are called vertices (singular: vertex), and E is a set of unordered pairs {,} of vertices, whose elements are called edges (sometimes links or lines).
Multiple edges, not allowed under the definition above, are two or more edges with both the same tail and the same head. In one more general sense of the term allowing multiple edges, [5] a directed graph is an ordered triple = (,,) comprising: , a set of vertices (also called nodes or points);
In graph theory, a loop (also called a self-loop or a buckle) is an edge that connects a vertex to itself. A simple graph contains no loops. Depending on the context, a graph or a multigraph may be defined so as to either allow or disallow the presence of loops (often in concert with allowing or disallowing multiple edges between the same ...
A multiple adjacency or multiple edge is a set of more than one edge that all have the same endpoints (in the same direction, in the case of directed graphs). A graph with multiple edges is often called a multigraph. multiplicity The multiplicity of an edge is the number of edges in a multiple adjacency.
In graph theory, a planar graph is a graph that can be embedded in the plane, i.e., it can be drawn on the plane in such a way that its edges intersect only at their endpoints. In other words, it can be drawn in such a way that no edges cross each other. [1] [2] Such a drawing is called a plane graph, or a planar embedding of the graph.
A 1-forest, sometimes called a maximal pseudoforest, is a pseudoforest to which no more edges can be added without causing some component of the graph to contain multiple cycles. If a pseudoforest contains a tree as one of its components, it cannot be a 1-forest, for one can add either an edge connecting two vertices within that tree, forming a ...
The order-zero graph, K 0, is the unique graph having no vertices (hence its order is zero). It follows that K 0 also has no edges. Thus the null graph is a regular graph of degree zero. Some authors exclude K 0 from consideration as a graph (either by definition