Ad
related to: impedance of capacitors and inductors function
Search results
Results from the WOW.Com Content Network
In electrical engineering, impedance is the opposition to alternating current presented by the combined effect of resistance and reactance in a circuit. [1]Quantitatively, the impedance of a two-terminal circuit element is the ratio of the complex representation of the sinusoidal voltage between its terminals, to the complex representation of the current flowing through it. [2]
The two-element LC circuit described above is the simplest type of inductor-capacitor network (or LC network). It is also referred to as a second order LC circuit [ 1 ] [ 2 ] to distinguish it from more complicated (higher order) LC networks with more inductors and capacitors.
This circuit does not have a resistor like the above, but all tuned circuits have some resistance, causing them to function as an RLC circuit. An RLC circuit is an electrical circuit consisting of a resistor (R), an inductor (L), and a capacitor (C), connected in series or in parallel. The name of the circuit is derived from the letters that ...
The impedance function of the capacitor is identical to the admittance function of the inductor and vice versa. It is a general result that the dual of any immittance function that obeys Foster's theorem will also follow Foster's theorem.
Inductors have values that typically range from 1 μH (10 −6 H) to 20 H. Many inductors have a magnetic core made of iron or ferrite inside the coil, which serves to increase the magnetic field and thus the inductance. Along with capacitors and resistors, inductors are one of the three passive linear circuit elements that make up electronic ...
A simple electrical impedance-matching network requires one capacitor and one inductor. In the figure to the right, R 1 > R 2, however, either R 1 or R 2 may be the source and the other the load. One of X 1 or X 2 must be an inductor and the other must be a capacitor. One reactance is in parallel with the source (or load), and the other is in ...
The Pierce oscillator, with two capacitors and one inductor, is equivalent to the Colpitts oscillator. [8] Equivalence can be shown by choosing the junction of the two capacitors as the ground point. An electrical dual of the standard Pierce oscillator using two inductors and one capacitor is equivalent to the Hartley oscillator.
Also called chordal or DC resistance This corresponds to the usual definition of resistance; the voltage divided by the current R s t a t i c = V I. {\displaystyle R_{\mathrm {static} }={V \over I}.} It is the slope of the line (chord) from the origin through the point on the curve. Static resistance determines the power dissipation in an electrical component. Points on the current–voltage ...
Ad
related to: impedance of capacitors and inductors function