Search results
Results from the WOW.Com Content Network
For example, galaxies that are farther than the Hubble radius, approximately 4.5 gigaparsecs or 14.7 billion light-years, away from us have a recession speed that is faster than the speed of light. Visibility of these objects depends on the exact expansion history of the universe.
For supernovae at redshift less than around 0.1, or light travel time less than 10 percent of the age of the universe, this gives a nearly linear distance–redshift relation due to Hubble's law. At larger distances, since the expansion rate of the universe has changed over time, the distance-redshift relation deviates from linearity, and this ...
As the inflationary field slowly relaxes to the vacuum, the cosmological constant goes to zero and space begins to expand normally. The new regions that come into view during the normal expansion phase are exactly the same regions that were pushed out of the horizon during inflation, and so they are at nearly the same temperature and curvature ...
The magnitude of the energy of cosmic ray flux in interstellar space is very comparable to that of other deep space energies: cosmic ray energy density averages about one electron-volt per cubic centimetre of interstellar space, or ≈1 eV/cm 3, which is comparable to the energy density of visible starlight at 0.3 eV/cm 3, the galactic magnetic ...
One classical thermal escape mechanism is Jeans escape, [1] named after British astronomer Sir James Jeans, who first described this process of atmospheric loss. [2] In a quantity of gas, the average velocity of any one molecule is measured by the gas's temperature, but the velocities of individual molecules change as they collide with one another, gaining and losing kinetic energy.
Cherenkov radiation glowing in the core of the Advanced Test Reactor at Idaho National Laboratory. Cherenkov radiation (/ tʃ ə ˈ r ɛ ŋ k ɒ f / [1]) is electromagnetic radiation emitted when a charged particle (such as an electron) passes through a dielectric medium (such as distilled water) at a speed greater than the phase velocity (speed of propagation of a wavefront in a medium) of ...
The Jeans mass is named after the British physicist Sir James Jeans, who considered the process of gravitational collapse within a gaseous cloud. He was able to show that, under appropriate conditions, a cloud, or part of one, would become unstable and begin to collapse when it lacked sufficient gaseous pressure support to balance the force of gravity.
The Alcubierre drive ([alkuˈβjere]) is a speculative warp drive idea according to which a spacecraft could achieve apparent faster-than-light travel by contracting space in front of it and expanding space behind it, under the assumption that a configurable energy-density field lower than that of vacuum (that is, negative mass) could be created.