Search results
Results from the WOW.Com Content Network
In propositional logic, affirming the consequent (also known as converse error, fallacy of the converse, or confusion of necessity and sufficiency) is a formal fallacy (or an invalid form of argument) that is committed when, in the context of an indicative conditional statement, it is stated that because the consequent is true, therefore the ...
In propositional logic, modus ponens (/ ˈ m oʊ d ə s ˈ p oʊ n ɛ n z /; MP), also known as modus ponendo ponens (from Latin 'mode that by affirming affirms'), [1] implication elimination, or affirming the antecedent, [2] is a deductive argument form and rule of inference. [3] It can be summarized as "P implies Q. P is true. Therefore, Q ...
Types of propositional fallacies: Affirming a disjunct – concluding that one disjunct of a logical disjunction must be false because the other disjunct is true; A or B; A, therefore not B. [10] Affirming the consequent – the antecedent in an indicative conditional is claimed to be true because the consequent is true; if A, then B; B ...
While a logical argument is a non sequitur if, and only if, it is invalid, the term "non sequitur" typically refers to those types of invalid arguments which do not constitute formal fallacies covered by particular terms (e.g., affirming the consequent). In other words, in practice, "non sequitur" refers to an unnamed formal fallacy.
Going from a statement to its converse is the fallacy of affirming the consequent. However, if the statement S and its converse are equivalent (i.e., P is true if and only if Q is also true), then affirming the consequent will be valid. Converse implication is logically equivalent to the disjunction of and
In propositional logic, modus tollens (/ ˈ m oʊ d ə s ˈ t ɒ l ɛ n z /) (MT), also known as modus tollendo tollens (Latin for "mode that by denying denies") [2] and denying the consequent, [3] is a deductive argument form and a rule of inference. Modus tollens is a mixed hypothetical syllogism that takes the form of "If P, then Q. Not Q ...
One type of formal fallacy is affirming the consequent, as in "if John is a bachelor, then he is male; John is male; therefore, John is a bachelor". [23] This is similar to the valid rule of inference named modus ponens, but the second premise and the conclusion are switched around, which is why it is invalid.
An example is a probabilistically valid instance of the formally invalid argument form of denying the antecedent or affirming the consequent ... logical fallacy ...