Search results
Results from the WOW.Com Content Network
Clar's rule has also been supported by experimental results about the distribution of π-electrons in polycyclic aromatic hydrocarbons, [7] valence bond calculations, [8] and nucleus-independent chemical shift studies. [9] Clar's rule is widely applied in the fields of chemistry and materials science.
According to Clar's rule, [20] the resonance structure of a PAH that has the largest number of disjoint aromatic pi sextets—i.e. benzene-like moieties—is the most important for the characterization of the properties of that PAH. [21] Benzene-substructure resonance analysis for Clar's rule
Contributing structures of the carbonate ion. In chemistry, resonance, also called mesomerism, is a way of describing bonding in certain molecules or polyatomic ions by the combination of several contributing structures (or forms, [1] also variously known as resonance structures or canonical structures) into a resonance hybrid (or hybrid structure) in valence bond theory.
Two different resonance forms of benzene (top) combine to produce an average structure (bottom). In organic chemistry, aromaticity is a chemical property describing the way in which a conjugated ring of unsaturated bonds, lone pairs, or empty orbitals exhibits a stabilization stronger than would be expected from conjugation alone.
Erich Clar (23 August 1902 – 27 March 1987) was an Austrian organic chemist, born in HÅ™ensko, who studied polycyclic aromatic hydrocarbon chemistry. He is considered as the father of that field. [ 1 ]
A stirred BZ reaction mixture showing changes in color over time. The discovery of the phenomenon is credited to Boris Belousov.In 1951, while trying to find the non-organic analog to the Krebs cycle, he noted that in a mix of potassium bromate, cerium(IV) sulfate, malonic acid, and citric acid in dilute sulfuric acid, the ratio of concentration of the cerium(IV) and cerium(III) ions ...
The two reactions are named according tho their rate law, with S N 1 having a first-order rate law, and S N 2 having a second-order. [2] S N 1 reaction mechanism occurring through two steps. The S N 1 mechanism has two steps. In the first step, the leaving group departs, forming a carbocation (C +). In the second step, the nucleophilic reagent ...
In the reaction mechanism, there is 1 as the nucleophile: [3]. Deprotonation of 1 by a base leads to carbanion 2, stabilized by its electron-withdrawing groups.Structures 2a to 2c are three resonance structures that can be drawn for this species, two of which have enolate ions.