Search results
Results from the WOW.Com Content Network
The objective is to make the approximation as close as possible to the actual function, typically with an accuracy close to that of the underlying computer's floating point arithmetic. This is accomplished by using a polynomial of high degree , and/or narrowing the domain over which the polynomial has to approximate the function.
The Weierstrass approximation theorem states that every continuous function defined on a closed interval [a,b] ...
A best approximation for the second definition is also a best approximation for the first one, but the converse is not true in general. [4] The theory of continued fractions allows us to compute the best approximations of a real number: for the second definition, they are the convergents of its expression as a regular continued fraction.
Henri Padé. In mathematics, a Padé approximant is the "best" approximation of a function near a specific point by a rational function of given order. Under this technique, the approximant's power series agrees with the power series of the function it is approximating.
In mathematics, least squares function approximation applies the principle of least squares to function approximation, by means of a weighted sum of other functions.The best approximation can be defined as that which minimizes the difference between the original function and the approximation; for a least-squares approach the quality of the approximation is measured in terms of the squared ...
This x-intercept will typically be a better approximation to the original function's root than the first guess, and the method can be iterated. x n+1 is a better approximation than x n for the root x of the function f (blue curve) If the tangent line to the curve f(x) at x = x n intercepts the x-axis at x n+1 then the slope is
The polynomial of best approximation within a given subspace is defined to be the one that minimizes the maximum absolute difference between the polynomial and the function. In this case, the form of the solution is precised by the equioscillation theorem .
In calculus, Taylor's theorem gives an approximation of a -times differentiable function around a given point by a polynomial of degree , called the -th-order Taylor polynomial. For a smooth function , the Taylor polynomial is the truncation at the order k {\textstyle k} of the Taylor series of the function.