Search results
Results from the WOW.Com Content Network
MATLAB (an abbreviation of "MATrix LABoratory" [18]) is a proprietary multi-paradigm programming language and numeric computing environment developed by MathWorks.MATLAB allows matrix manipulations, plotting of functions and data, implementation of algorithms, creation of user interfaces, and interfacing with programs written in other languages.
The Eclipse SDK includes the Eclipse Java development tools (JDT), offering an IDE with a built-in Java incremental compiler and a full model of the Java source files. This allows for advanced refactoring techniques and code analysis.
Eclipse Che is an open-source, Java-based developer workspace server and online IDE (integrated development environment). It includes a multi-user remote development platform. It includes a multi-user remote development platform.
Eclipse Modeling Framework (EMF) is an Eclipse-based modeling framework and code generation facility for building tools and other applications based on a structured data model.
It's a free compiler, though it also has commercial add-ons (e.g. for hiding source code). Numba is used from Python, as a tool (enabled by adding a decorator to relevant Python code), a JIT compiler that translates a subset of Python and NumPy code into fast machine code. Pythran compiles a subset of Python 3 to C++ . [165]
Matplotlib (portmanteau of MATLAB, plot, and library [3]) is a plotting library for the Python programming language and its numerical mathematics extension NumPy.It provides an object-oriented API for embedding plots into applications using general-purpose GUI toolkits like Tkinter, wxPython, Qt, or GTK.
The Zen of Python is a collection of 19 "guiding principles" for writing computer programs that influence the design of the Python programming language. [1] Python code that aligns with these principles is often referred to as "Pythonic". [2] Software engineer Tim Peters wrote this set of principles and posted it on the Python mailing list in ...
Features include mixed precision training, single-GPU, multi-GPU, and multi-node training as well as custom model parallelism. The DeepSpeed source code is licensed under MIT License and available on GitHub. [5] The team claimed to achieve up to a 6.2x throughput improvement, 2.8x faster convergence, and 4.6x less communication. [6]