Search results
Results from the WOW.Com Content Network
That is, the Taylor series diverges at x if the distance between x and b is larger than the radius of convergence. The Taylor series can be used to calculate the value of an entire function at every point, if the value of the function, and of all of its derivatives, are known at a single point. Uses of the Taylor series for analytic functions ...
In probability theory, it is possible to approximate the moments of a function f of a random variable X using Taylor expansions, provided that f is sufficiently differentiable and that the moments of X are finite. A simulation-based alternative to this approximation is the application of Monte Carlo simulations.
Now its Taylor series centered at z 0 converges on any disc B(z 0, r) with r < |z − z 0 |, where the same Taylor series converges at z ∈ C. Therefore, Taylor series of f centered at 0 converges on B(0, 1) and it does not converge for any z ∈ C with |z| > 1 due to the poles at i and −i.
The Taylor expansion would be: + where / denotes the partial derivative of f k with respect to the i-th variable, evaluated at the mean value of all components of vector x. Or in matrix notation , f ≈ f 0 + J x {\displaystyle \mathrm {f} \approx \mathrm {f} ^{0}+\mathrm {J} \mathrm {x} \,} where J is the Jacobian matrix .
In mathematics, every analytic function can be used for defining a matrix function that maps square matrices with complex entries to square matrices of the same size.. This is used for defining the exponential of a matrix, which is involved in the closed-form solution of systems of linear differential equations.
which may be interpreted operationally through its formal Taylor expansion in t; and whose action on the monomial x n is evident by the binomial theorem, and hence on all series in x, and so all functions f(x) as above. [3] This, then, is a formal encoding of the Taylor expansion in Heaviside's calculus.
This expansion is known as the multipole expansion of U AB. In order to derive this multipole expansion, we write r XY = r Y − r X , which is a vector pointing from X towards Y . Note that R A B + r B j + r j i + r i A = 0 r i j = R A B − r A i + r B j . {\displaystyle \mathbf {R} _{AB}+\mathbf {r} _{Bj}+\mathbf {r} _{ji}+\mathbf {r} _{iA ...
In fact, for a smooth enough function, we have the similar Taylor expansion (+) = ...