Ad
related to: rotor to fixed wing transition requirements for boats near me right now
Search results
Results from the WOW.Com Content Network
A rotor wing aircraft has been attempted but is not in wide use. The Boeing X-50 Dragonfly had a two-bladed rotor driven by the engine for takeoff. In horizontal flight the rotor stopped to act like a wing. Fixed canard and tail surfaces provided lift during transition, and also stability and control in forward flight. Both examples of this ...
The stopped rotor type has a separate system for forward thrust. It takes off like a helicopter but for forward flight the rotor stops and acts as a fixed wing. The gyrocopter is similar except that the rotor continues to spin and to generate a significant amount of lift, and so is classed as a rotorcraft and not a convertiplane.
A proprotor is a spinning airfoil that function as both an airplane-style propeller and a helicopter-style rotor. Several proprotor-equipped convertiplanes, such as the Bell Boeing V-22 Osprey tiltrotor, are capable of switching back and forth between flying akin to both helicopters and fixed-wing aircraft. [1]
A tiltrotor is an aircraft that generates lift and propulsion by way of one or more powered rotors (sometimes called proprotors) mounted on rotating shafts or nacelles usually at the ends of a fixed wing. Almost all tiltrotors use a transverse rotor design, with a few exceptions that use other multirotor layouts.
The Boeing X-50A Dragonfly, formerly known as the Canard Rotor/Wing Demonstrator, was a VTOL rotor wing experimental unmanned aerial vehicle that was developed by Boeing and DARPA to demonstrate the principle that a helicopter's rotor could be stopped in flight and act as a fixed wing, enabling it to transition between fixed-wing and rotary-wing flight.
According to the Cousteau Society, "when compared to the thrust coefficient of the best sails ever built (Marconi or square types, i.e. ships of the American Cup [sic] or the Japanese wind propulsion system) that of the turbosail is 3.5 to 4 times superior and gives the system a unique advantage for the economical propulsion of ships."
When a hovering rotor is near the ground the downward flow of air through the rotor is reduced to zero at the ground. This condition is transferred up to the disc through pressure changes in the wake which decreases the inflow to the rotor for a given disc loading, which is rotor thrust for each square foot of its area.
A Magnus rotor used to propel a ship is called a rotor sail and is mounted with its axis vertical. When the wind blows from the side, the Magnus effect creates a forward thrust. The most common form of rotor sail is the Flettner rotor. [4] [failed verification] The wind does not power the rotor, which is rotated by its own power source.
Ad
related to: rotor to fixed wing transition requirements for boats near me right now