Search results
Results from the WOW.Com Content Network
In general, mammals have hearts about 0.6% of their total body mass: =, where M is the body mass of the individual. [41] Lung volume is also directly related to body mass in mammals (slope = 1.02). The lung has a volume of 63 ml for every kg of body mass, with the tidal volume at rest being 1/10 the lung volume.
The surface-area-to-volume ratio has physical dimension inverse length (L −1) and is therefore expressed in units of inverse metre (m −1) or its prefixed unit multiples and submultiples. As an example, a cube with sides of length 1 cm will have a surface area of 6 cm 2 and a volume of 1 cm 3. The surface to volume ratio for this cube is thus
A surface mass on a surface given by the equation f (x, y, z) = 0 may be represented by a density distribution g(x, y, z) δ(f (x, y, z)), where / | | is the mass per unit area. The mathematical modelling can be done by potential theory , by numerical methods (e.g. a great number of mass points ), or by theoretical equilibrium figures.
A rectangular prism two cubes wide, one cube long and four cubes tall has the same volume, but a surface area of 28 units 2. Stacking them in a single column gives 34 units 2. Allen's rule predicts that endothermic animals with the same body volume should have different surface areas that will either aid or impede their heat dissipation.
The experimental determination of a body's center of mass makes use of gravity forces on the body and is based on the fact that the center of mass is the same as the center of gravity in the parallel gravity field near the earth's surface. The center of mass of a body with an axis of symmetry and constant density must lie on this axis.
A body force is simply a type of force, and so it has the same dimensions as force, [M][L][T] −2. However, it is often convenient to talk about a body force in terms of either the force per unit volume or the force per unit mass. If the force per unit volume is of interest, it is referred to as the force density throughout the system.
If a first body of mass m A is placed at a distance r (center of mass to center of mass) from a second body of mass m B, each body is subject to an attractive force F g = Gm A m B /r 2, where G = 6.67 × 10 −11 N⋅kg −2 ⋅m 2 is the "universal gravitational constant". This is sometimes referred to as gravitational mass.
The three anatomical planes of the body: the sagittal, transverse (or horizontal), frontal planes. Anatomy is often described in planes, referring to two-dimensional sections of the body. A section is a two-dimensional surface of a three-dimensional structure that has been cut. A plane is an imaginary two-dimensional surface that passes through ...