enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Computed tomography imaging spectrometer - Wikipedia

    en.wikipedia.org/wiki/Computed_tomography...

    A fast reconstruction algorithm for computed tomography imaging spectrometer (CTIS) is documented in the paper: Larz White, W. Bryan Bell, Ryan Haygood, "Accelerating computed tomographic imaging spectrometer reconstruction using a parallel algorithm exploiting spatial shift-invariance", Opt. Eng. 59(5), 055110 (2020).

  3. Spectral space - Wikipedia

    en.wikipedia.org/wiki/Spectral_space

    A spectral map f: X → Y between spectral spaces X and Y is a continuous map such that the preimage of every open and compact subset of Y under f is again compact. The category of spectral spaces, which has spectral maps as morphisms, is dually equivalent to the category of bounded distributive lattices (together with homomorphisms of such ...

  4. Spectral centroid - Wikipedia

    en.wikipedia.org/wiki/Spectral_centroid

    The spectral centroid is a measure used in digital signal processing to characterise a spectrum. It indicates where the center of mass of the spectrum is located. Perceptually, it has a robust connection with the impression of brightness of a sound. [1] It is sometimes called center of spectral mass. [2]

  5. Spectral radius - Wikipedia

    en.wikipedia.org/wiki/Spectral_radius

    In mathematics, the spectral radius of a square matrix is the maximum of the absolute values of its eigenvalues. [1] More generally, the spectral radius of a bounded linear operator is the supremum of the absolute values of the elements of its spectrum. The spectral radius is often denoted by ρ(·).

  6. Spectral line shape - Wikipedia

    en.wikipedia.org/wiki/Spectral_line_shape

    For example, if the heights of two lines are found to be h 1 and h 2, c 1 = h 1 / ε 1 and c 2 = h 2 / ε 2. [14] Parameters of the line shape are unknown. The intensity of each component is a function of at least 3 parameters, position, height and half-width. In addition one or both of the line shape function and baseline function may not be ...

  7. Hyperspectral imaging - Wikipedia

    en.wikipedia.org/wiki/Hyperspectral_imaging

    Hyperspectral imaging collects and processes information from across the electromagnetic spectrum. [1] The goal of hyperspectral imaging is to obtain the spectrum for each pixel in the image of a scene, with the purpose of finding objects, identifying materials, or detecting processes. [2] [3] There are three general types of spectral imagers.

  8. Spectral imaging - Wikipedia

    en.wikipedia.org/wiki/Spectral_imaging

    Spectral imaging may use the infrared, the visible spectrum, the ultraviolet, x-rays, or some combination of the above. It may include the acquisition of image data in visible and non-visible bands simultaneously, illumination from outside the visible range, or the use of optical filters to capture a specific spectral range.

  9. Spectral power distribution - Wikipedia

    en.wikipedia.org/wiki/Spectral_power_distribution

    Mathematically, for the spectral power distribution of a radiant exitance or irradiance one may write: =where M(λ) is the spectral irradiance (or exitance) of the light (SI units: W/m 2 = kg·m −1 ·s −3); Φ is the radiant flux of the source (SI unit: watt, W); A is the area over which the radiant flux is integrated (SI unit: square meter, m 2); and λ is the wavelength (SI unit: meter, m).