Search results
Results from the WOW.Com Content Network
Any non-linear differentiable function, (,), of two variables, and , can be expanded as + +. If we take the variance on both sides and use the formula [11] for the variance of a linear combination of variables (+) = + + (,), then we obtain | | + | | +, where is the standard deviation of the function , is the standard deviation of , is the standard deviation of and = is the ...
Statements about relative errors are sensitive to addition of constants, but not to multiplication by constants. For absolute errors, the opposite is true: ...
The earliest reference to a similar formula appears to be Armstrong (1985, p. 348), where it is called "adjusted MAPE" and is defined without the absolute values in the denominator. It was later discussed, modified, and re-proposed by Flores (1986).
Relative uncertainty is the measurement uncertainty relative to the magnitude of a particular single choice for the value for the measured quantity, when this choice is nonzero. This particular single choice is usually called the measured value, which may be optimal in some well-defined sense (e.g., a mean, median, or mode). Thus, the relative ...
Comparing coefficients of variation between parameters using relative units can result in differences that may not be real. If we compare the same set of temperatures in Celsius and Fahrenheit (both relative units, where kelvin and Rankine scale are their associated absolute values): Celsius: [0, 10, 20, 30, 40] Fahrenheit: [32, 50, 68, 86, 104]
The full formula, together with precise estimates of its error, can be derived as follows. Instead of approximating n ! {\displaystyle n!} , one considers its natural logarithm , as this is a slowly varying function : ln ( n !
It is remarkable that the sum of squares of the residuals and the sample mean can be shown to be independent of each other, using, e.g. Basu's theorem.That fact, and the normal and chi-squared distributions given above form the basis of calculations involving the t-statistic:
These deviations are called residuals when the calculations are performed over the data sample that was used for estimation (and are therefore always in reference to an estimate) and are called errors (or prediction errors) when computed out-of-sample (aka on the full set, referencing a true value rather than an estimate). The RMSD serves to ...