Search results
Results from the WOW.Com Content Network
The graph takes sediment particle size and water velocity into account. [2] The upper curve shows the critical erosion velocity in cm/s as a function of particle size in mm, while the lower curve shows the deposition velocity as a function of particle size. Note that the axes are logarithmic.
Stream power, originally derived by R. A. Bagnold in the 1960s, is the amount of energy the water in a river or stream is exerting on the sides and bottom of the river. [1] Stream power is the result of multiplying the density of the water, the acceleration of the water due to gravity, the volume of water flowing through the river, and the ...
The term stream power law describes a semi-empirical family of equations used to predict the rate of erosion of a river into its bed. These combine equations describing conservation of water mass and momentum in streams with relations for channel hydraulic geometry (width-discharge scaling) and basin hydrology (discharge-area scaling) and an assumed dependency of erosion rate on either unit ...
Stream power is the rate of potential energy loss per unit of channel length. [7] This potential energy is lost moving particles along the stream bed. = where is the stream power, is the density of water, is the gravitational acceleration, is the channel slope, and is the discharge of the stream.
In hydrology, discharge is the volumetric flow rate (volume per time, in units of m 3 /h or ft 3 /h) of a stream.It equals the product of average flow velocity (with dimension of length per time, in m/h or ft/h) and the cross-sectional area (in m 2 or ft 2). [1]
The dashed lines represent contours of the velocity field (streamlines), showing the motion of the whole field at the same time. (See high resolution version.) Solid blue lines and broken grey lines represent the streamlines. The red arrows show the direction and magnitude of the flow velocity. These arrows are tangential to the streamline.
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
A vortex sheet is a term used in fluid mechanics for a surface across which there is a discontinuity in fluid velocity, such as in slippage of one layer of fluid over another. [1] While the tangential components of the flow velocity are discontinuous across the vortex sheet, the normal component of the flow velocity is continuous.