Search results
Results from the WOW.Com Content Network
Ethyl sulfate can be produced in a laboratory setting by reacting ethanol with sulfuric acid under a gentle boil, while keeping the reaction below 140 °C. The sulfuric acid must be added dropwise or the reaction must be actively cooled because the reaction itself is highly exothermic. CH 3 CH 2 OH + H 2 SO 4 → CH 3 CH 2 OSO 3 H + H 2 O
The term alcohol originally referred to the primary alcohol ethanol (ethyl alcohol), which is used as a drug and is the main alcohol present in alcoholic drinks. The suffix -ol appears in the International Union of Pure and Applied Chemistry (IUPAC) chemical name of all substances where the hydroxyl group is the functional group with the ...
Alcohol oxidation is a collection of oxidation reactions in organic chemistry that convert alcohols to aldehydes, ketones, carboxylic acids, and esters. The reaction mainly applies to primary and secondary alcohols. Secondary alcohols form ketones, while primary alcohols form aldehydes or carboxylic acids. [1] A variety of oxidants can be used.
If produced from oleochemical feedstock or the Ziegler process, the hydrocarbon chain of the alcohol will be linear. If derived using the oxo process, a low level of branching will appear usually with a methyl or ethyl group at the C-2 position, containing even and odd amounts of alkyl chains. [3] These alcohols react with chlorosulfuric acid:
An ester of a carboxylic acid.R stands for any group (typically hydrogen or organyl) and R ′ stands for any organyl group.. In chemistry, an ester is a compound derived from an acid (organic or inorganic) in which the hydrogen atom (H) of at least one acidic hydroxyl group (−OH) of that acid is replaced by an organyl group (R ′). [1]
The reaction is often carried out without a solvent (particularly when a large reagent excess of the alcohol reagent is used) or in a non-polar solvent (e.g. toluene, hexane) that can facilitate Dean–Stark distillation to remove the water byproduct. [4] Typical reaction times vary from 1–10 hours at temperatures of 60–110 °C.
The Williamson reaction is also frequently used to prepare an ether indirectly from two alcohols. One of the alcohols is first converted to a leaving group (usually tosylate), then the two are reacted together. The alkoxide (or aryloxide) may be primary and secondary. Tertiary alkoxides tend to give elimination reaction because of steric hindrance.
Lucas test: negative (left) with ethanol and positive with t-butanol "Lucas' reagent" is a solution of anhydrous zinc chloride in concentrated hydrochloric acid. This solution is used to classify alcohols of low molecular weight. The reaction is a substitution in which the chloride replaces a hydroxyl group.