enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Assignment problem - Wikipedia

    en.wikipedia.org/wiki/Assignment_problem

    Construct a flow network with the following layers: Layer 1: One source-node s. Layer 2: a node for each agent. There is an arc from s to each agent i, with cost 0 and capacity c i. Level 3: a node for each task. There is an arc from each agent i to each task j, with the corresponding cost, and capacity 1. Level 4: One sink-node t.

  3. Penalty method - Wikipedia

    en.wikipedia.org/wiki/Penalty_method

    For every penalty coefficient p, the set of global optimizers of the penalized problem, X p *, is non-empty. For every ε>0, there exists a penalty coefficient p such that the set X p * is contained in an ε-neighborhood of the set X*. This theorem is helpful mostly when f p is convex, since in this case, we can find the global optimizers of f p.

  4. Karmarkar's algorithm - Wikipedia

    en.wikipedia.org/wiki/Karmarkar's_algorithm

    Algorithm Affine-Scaling . Since the actual algorithm is rather complicated, researchers looked for a more intuitive version of it, and in 1985 developed affine scaling, a version of Karmarkar's algorithm that uses affine transformations where Karmarkar used projective ones, only to realize four years later that they had rediscovered an algorithm published by Soviet mathematician I. I. Dikin ...

  5. Linear programming - Wikipedia

    en.wikipedia.org/wiki/Linear_programming

    Maximize c T x subject to Ax ≤ b, x ≥ 0; with the corresponding symmetric dual problem, Minimize b T y subject to A T y ≥ c, y ≥ 0. An alternative primal formulation is: Maximize c T x subject to Ax ≤ b; with the corresponding asymmetric dual problem, Minimize b T y subject to A T y = c, y ≥ 0. There are two ideas fundamental to ...

  6. Linear programming relaxation - Wikipedia

    en.wikipedia.org/wiki/Linear_programming_relaxation

    Otherwise, let x j be any variable that is set to a fractional value in the relaxed solution. Form two subproblems, one in which x j is set to 0 and the other in which x j is set to 1; in both subproblems, the existing assignments of values to some of the variables are still used, so the set of remaining variables becomes V i \ {x j ...

  7. Dual linear program - Wikipedia

    en.wikipedia.org/wiki/Dual_linear_program

    The combined LP has both x and y as variables: Maximize 1. subject to Ax ≤ b, A T y ≥ c, c T x ≥ b T y, x ≥ 0, y ≥ 0. If the combined LP has a feasible solution (x,y), then by weak duality, c T x = b T y. So x must be a maximal solution of the primal LP and y must be a minimal solution of the dual LP. If the combined LP has no ...

  8. lp_solve - Wikipedia

    en.wikipedia.org/wiki/Lp_solve

    lp_solve is a free software command line utility and library for solving linear programming and mixed integer programming problems. It ships with support for two file formats, MPS and lp_solve's own LP format. [ 1 ]

  9. Big M method - Wikipedia

    en.wikipedia.org/wiki/Big_M_method

    Solve the problem using the usual simplex method. For example, x + y ≤ 100 becomes x + y + s 1 = 100, whilst x + y ≥ 100 becomes x + y − s 1 + a 1 = 100. The artificial variables must be shown to be 0. The function to be maximised is rewritten to include the sum of all the artificial variables.