Search results
Results from the WOW.Com Content Network
For every penalty coefficient p, the set of global optimizers of the penalized problem, X p *, is non-empty. For every ε>0, there exists a penalty coefficient p such that the set X p * is contained in an ε-neighborhood of the set X*. This theorem is helpful mostly when f p is convex, since in this case, we can find the global optimizers of f p.
Construct a flow network with the following layers: Layer 1: One source-node s. Layer 2: a node for each agent. There is an arc from s to each agent i, with cost 0 and capacity c i. Level 3: a node for each task. There is an arc from each agent i to each task j, with the corresponding cost, and capacity 1. Level 4: One sink-node t.
For the definitions below, we first present the linear program in the so-called equational form: . maximize subject to = and . where: and are vectors of size n (the number of variables);
If we denote the area of land planted with wheat and barley by x 1 and x 2 respectively, then profit can be maximized by choosing optimal values for x 1 and x 2. This problem can be expressed with the following linear programming problem in the standard form:
The combined LP has both x and y as variables: Maximize 1. subject to Ax ≤ b, A T y ≥ c, c T x ≥ b T y, x ≥ 0, y ≥ 0. If the combined LP has a feasible solution (x,y), then by weak duality, c T x = b T y. So x must be a maximal solution of the primal LP and y must be a minimal solution of the dual LP. If the combined LP has no ...
Otherwise, let x j be any variable that is set to a fractional value in the relaxed solution. Form two subproblems, one in which x j is set to 0 and the other in which x j is set to 1; in both subproblems, the existing assignments of values to some of the variables are still used, so the set of remaining variables becomes V i \ {x j ...
Solve the problem using the usual simplex method. For example, x + y ≤ 100 becomes x + y + s 1 = 100, whilst x + y ≥ 100 becomes x + y − s 1 + a 1 = 100. The artificial variables must be shown to be 0. The function to be maximised is rewritten to include the sum of all the artificial variables.
A linear program can be regarded as a special case of a linear-fractional program in which the denominator is the constant function 1. Formally, a linear-fractional program is defined as the problem of maximizing (or minimizing) a ratio of affine functions over a polyhedron,