enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Rate equation - Wikipedia

    en.wikipedia.org/wiki/Rate_equation

    A first order reaction depends on the concentration of only one reactant (a unimolecular reaction). Other reactants can be present, but their concentration has no effect on the rate. The rate law for a first order reaction is [] = [], The unit of k is s −1. [14]

  3. Second-order conditioning - Wikipedia

    en.wikipedia.org/wiki/Second-order_conditioning

    An example of second-order conditioning. In classical conditioning, second-order conditioning or higher-order conditioning is a form of learning in which a stimulus is first made meaningful or consequential for an organism through an initial step of learning, and then that stimulus is used as a basis for learning about some new stimulus.

  4. Chemical kinetics - Wikipedia

    en.wikipedia.org/wiki/Chemical_kinetics

    Examples of software for chemical kinetics are i) Tenua, a Java app which simulates chemical reactions numerically and allows comparison of the simulation to real data, ii) Python coding for calculations and estimates and iii) the Kintecus software compiler to model, regress, fit and optimize reactions. -Numerical integration: for a 1st order ...

  5. Molecularity - Wikipedia

    en.wikipedia.org/wiki/Molecularity

    These reactions frequently have a pressure and temperature dependence region of transition between second and third order kinetics. [ 8 ] Catalytic reactions are often three-component, but in practice a complex of the starting materials is first formed and the rate-determining step is the reaction of this complex into products, not an ...

  6. Rate-determining step - Wikipedia

    en.wikipedia.org/wiki/Rate-determining_step

    The second step with OH − is much faster, so the overall rate is independent of the concentration of OH −. In contrast, the alkaline hydrolysis of methyl bromide (CH 3 Br) is a bimolecular nucleophilic substitution (S N 2) reaction in a single bimolecular step. Its rate law is second-order: r = k[R−Br][OH −].

  7. Order of approximation - Wikipedia

    en.wikipedia.org/wiki/Order_of_approximation

    In the zeroth-order example above, the quantity "a few" was given, but in the first-order example, the number "4" is given. A first-order approximation of a function (that is, mathematically determining a formula to fit multiple data points) will be a linear approximation, straight line with a slope: a polynomial of degree 1. For example:

  8. Chemical reaction - Wikipedia

    en.wikipedia.org/wiki/Chemical_reaction

    Here k is the first-order rate constant, having dimension 1/time, [A](t) is the concentration at a time t and [A] 0 is the initial concentration. The rate of a first-order reaction depends only on the concentration and the properties of the involved substance, and the reaction itself can be described with a characteristic half-life. More than ...

  9. Substitution reaction - Wikipedia

    en.wikipedia.org/wiki/Substitution_reaction

    The two reactions are named according tho their rate law, with S N 1 having a first-order rate law, and S N 2 having a second-order. [2] S N 1 reaction mechanism occurring through two steps. The S N 1 mechanism has two steps. In the first step, the leaving group departs, forming a carbocation (C +). In the second step, the nucleophilic reagent ...