enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Cancellation property - Wikipedia

    en.wikipedia.org/wiki/Cancellation_property

    An element a in a magma (M, ∗) has the left cancellation property (or is left-cancellative) if for all b and c in M, a ∗ b = a ∗ c always implies that b = c. An element a in a magma (M, ∗) has the right cancellation property (or is right-cancellative) if for all b and c in M, b ∗ a = c ∗ a always implies that b = c.

  3. Inverse element - Wikipedia

    en.wikipedia.org/wiki/Inverse_element

    In mathematics, the concept of an inverse element generalises the concepts of opposite (−x) and reciprocal (1/x) of numbers.. Given an operation denoted here ∗, and an identity element denoted e, if x ∗ y = e, one says that x is a left inverse of y, and that y is a right inverse of x.

  4. Quasigroup - Wikipedia

    en.wikipedia.org/wiki/Quasigroup

    A loop has the weak inverse property when (xy)z = e if and only if x(yz) = e. This may be stated in terms of inverses via (xy) λ x = y λ or equivalently x(yx) ρ = y ρ. A loop has the inverse property if it has both the left and right inverse properties. Inverse property loops also have the antiautomorphic and weak inverse properties.

  5. Right inverse - Wikipedia

    en.wikipedia.org/wiki/Right_inverse

    A right inverse in mathematics may refer to: A right inverse element with respect to a binary operation on a set A right inverse function for a mapping between sets

  6. Group (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Group_(mathematics)

    The same result can be obtained by only assuming the existence of a right identity and a right inverse. However, only assuming the existence of a left identity and a right inverse (or vice versa) is not sufficient to define a group.

  7. Section (category theory) - Wikipedia

    en.wikipedia.org/wiki/Section_(category_theory)

    Both use of left/right inverse and section/retraction are commonly seen in the literature: the former use has the advantage that it is familiar from the theory of semigroups and monoids; the latter is considered less confusing by some because one does not have to think about 'which way around' composition goes, an issue that has become greater ...

  8. Rayleigh–Plesset equation - Wikipedia

    en.wikipedia.org/wiki/Rayleigh–Plesset_equation

    The Rayleigh–Plesset equation is often applied to the study of cavitation bubbles, shown here forming behind a propeller.. In fluid mechanics, the Rayleigh–Plesset equation or Besant–Rayleigh–Plesset equation is a nonlinear ordinary differential equation which governs the dynamics of a spherical bubble in an infinite body of incompressible fluid.

  9. Sherman–Morrison formula - Wikipedia

    en.wikipedia.org/wiki/Sherman–Morrison_formula

    To prove that the backward direction + + is invertible with inverse given as above) is true, we verify the properties of the inverse. A matrix (in this case the right-hand side of the Sherman–Morrison formula) is the inverse of a matrix (in this case +) if and only if = =.