Search results
Results from the WOW.Com Content Network
The analytic determination of the intersection curve of two surfaces is easy only in simple cases; for example: a) the intersection of two planes, b) plane section of a quadric (sphere, cylinder, cone, etc.), c) intersection of two quadrics in special cases. For the general case, literature provides algorithms, in order to calculate points of ...
The surface-to-surface intersection (SSI) problem is a basic workflow in computer-aided geometric design: Given two intersecting surfaces in R 3, compute all parts of the intersection curve. If two surfaces intersect, the result will be a set of isolated points, a set of curves, a set of overlapping surfaces, or any combination of these cases. [1]
Steinmetz curves for various cases Steinmetz solid (intersection of two cylinders) involving Steinmetz curves (purple) A Steinmetz curve is the curve of intersection of two right circular cylinders of radii a {\displaystyle a} and b , {\displaystyle b,} whose axes intersect perpendicularly.
The generation of a bicylinder Calculating the volume of a bicylinder. A bicylinder generated by two cylinders with radius r has the volume =, and the surface area [1] [6] =.. The upper half of a bicylinder is the square case of a domical vault, a dome-shaped solid based on any convex polygon whose cross-sections are similar copies of the polygon, and analogous formulas calculating the volume ...
In geometry, an intersection is a point, line, or curve common to two or more objects (such as lines, curves, planes, and surfaces). The simplest case in Euclidean geometry is the line–line intersection between two distinct lines , which either is one point (sometimes called a vertex ) or does not exist (if the lines are parallel ).
In three dimensions, a single equation usually gives a surface, and a curve must be specified as the intersection of two surfaces (see below), or as a system of parametric equations. [18] The equation x 2 + y 2 = r 2 is the equation for any circle centered at the origin (0, 0) with a radius of r.
Solving them as a system of two simultaneous equations finds the points which belong to both shapes, which is the intersection. The equations below were solved using Maple . This method has applications in computational geometry , graphics rendering , shape modeling , physics-based modeling , and related types of computational 3d simulations.
Viviani's curve is a special Clelia curve. For a Clelia curve the relation between the angles is =. Viviani's curve (red) as intersection of the sphere and a cone (pink) Subtracting 2× the cylinder equation from the sphere's equation and applying completing the square leads to the equation