Search results
Results from the WOW.Com Content Network
In the case of a pyramid, its surface area is the sum of the area of triangles and the area of the polygonal base. The volume of a pyramid is the one-third product of the base's area and the height. The pyramid height is defined as the length of the line segment between the apex and its orthogonal projection on the base.
The Egyptians knew the correct formula for the volume of such a truncated square pyramid, but no proof of this equation is given in the Moscow papyrus. The volume of a conical or pyramidal frustum is the volume of the solid before slicing its "apex" off, minus the volume of this "apex":
In geometry, a square pyramid is a pyramid with a square base, having a total of five faces. If the apex of the pyramid is directly above the center of the square, it is a right square pyramid with four isosceles triangles; otherwise, it is an oblique square pyramid. When all of the pyramid's edges are equal in length, its triangles are all ...
The volume of a tetrahedron can be obtained in many ways. It can be given by using the formula of the pyramid's volume: =. where is the base' area and is the height from the base to the apex. This applies for each of the four choices of the base, so the distances from the apices to the opposite faces are inversely proportional to the areas of ...
The generation of a bicylinder Calculating the volume of a bicylinder. A bicylinder generated by two cylinders with radius r has the volume =, and the surface area [1] [6] =.. The upper half of a bicylinder is the square case of a domical vault, a dome-shaped solid based on any convex polygon whose cross-sections are similar copies of the polygon, and analogous formulas calculating the volume ...
Such a formula would be needed for building pyramids. In the next problem (Problem 57), the height of a pyramid is calculated from the base length and the seked (Egyptian for slope), while problem 58 gives the length of the base and the height and uses these measurements to compute the seked.
In other words, a volume form gives rise to a measure with respect to which functions can be integrated by the appropriate Lebesgue integral. The absolute value of a volume form is a volume element, which is also known variously as a twisted volume form or pseudo-volume form. It also defines a measure, but exists on any differentiable manifold ...
The volume can be computed without use of the Gamma function. As is proved below using a vector-calculus double integral in polar coordinates, the volume V of an n-ball of radius R can be expressed recursively in terms of the volume of an (n − 2)-ball, via the interleaved recurrence relation: