enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. List of datasets for machine-learning research - Wikipedia

    en.wikipedia.org/wiki/List_of_datasets_for...

    Data about cybersecurity strategies from more than 75 countries. Tokenization, meaningless-frequent words removal. [366] Yanlin Chen, Yunjian Wei, Yifan Yu, Wen Xue, Xianya Qin APT Reports collection Sample of APT reports, malware, technology, and intelligence collection Raw and tokenize data available. All data is available in this GitHub ...

  3. Multivariate kernel density estimation - Wikipedia

    en.wikipedia.org/wiki/Multivariate_kernel...

    The goal of density estimation is to take a finite sample of data and to make inferences about the underlying probability density function everywhere, including where no data are observed. In kernel density estimation, the contribution of each data point is smoothed out from a single point into a region of space surrounding it. Aggregating the ...

  4. Keras - Wikipedia

    en.wikipedia.org/wiki/Keras

    Keras is an open-source library that provides a Python interface for artificial neural networks. Keras was first independent software, then integrated into the TensorFlow library , and later supporting more.

  5. Dense set - Wikipedia

    en.wikipedia.org/wiki/Dense_set

    In topology and related areas of mathematics, a subset A of a topological space X is said to be dense in X if every point of X either belongs to A or else is arbitrarily "close" to a member of A — for instance, the rational numbers are a dense subset of the real numbers because every real number either is a rational number or has a rational number arbitrarily close to it (see Diophantine ...

  6. Kernel density estimation - Wikipedia

    en.wikipedia.org/wiki/Kernel_density_estimation

    Kernel density estimation of 100 normally distributed random numbers using different smoothing bandwidths.. In statistics, kernel density estimation (KDE) is the application of kernel smoothing for probability density estimation, i.e., a non-parametric method to estimate the probability density function of a random variable based on kernels as weights.

  7. Density estimation - Wikipedia

    en.wikipedia.org/wiki/Density_Estimation

    Centered on each sample, a Gaussian kernel is drawn in gray. Averaging the Gaussians yields the density estimate shown in the dashed black curve. In statistics, probability density estimation or simply density estimation is the construction of an estimate, based on observed data, of an unobservable underlying probability density function. The ...

  8. Residual neural network - Wikipedia

    en.wikipedia.org/wiki/Residual_neural_network

    Examples include: [17] [18] Lang and Witbrock (1988) [19] trained a fully connected feedforward network where each layer skip-connects to all subsequent layers, like the later DenseNet (2016). In this work, the residual connection was the form x ↦ F ( x ) + P ( x ) {\displaystyle x\mapsto F(x)+P(x)} , where P {\displaystyle P} is a randomly ...

  9. DBSCAN - Wikipedia

    en.wikipedia.org/wiki/DBSCAN

    For example, on polygon data, the "neighborhood" could be any intersecting polygon, whereas the density predicate uses the polygon areas instead of just the object count. Various extensions to the DBSCAN algorithm have been proposed, including methods for parallelization, parameter estimation, and support for uncertain data.