Search results
Results from the WOW.Com Content Network
The IQR of a set of values is calculated as the difference between the upper and lower quartiles, Q 3 and Q 1. Each quartile is a median [8] calculated as follows. Given an even 2n or odd 2n+1 number of values first quartile Q 1 = median of the n smallest values third quartile Q 3 = median of the n largest values [8]
In statistics, the quartile coefficient of dispersion (QCD) is a descriptive statistic which measures dispersion and is used to make comparisons within and between data sets. Since it is based on quantile information, it is less sensitive to outliers than measures such as the coefficient of variation .
Variance (the square of the standard deviation) – location-invariant but not linear in scale. Variance-to-mean ratio – mostly used for count data when the term coefficient of dispersion is used and when this ratio is dimensionless, as count data are themselves dimensionless, not otherwise. Some measures of dispersion have specialized purposes.
Third quartile (Q 3 or 75th percentile): also known as the upper quartile q n (0.75), it is the median of the upper half of the dataset. [7] In addition to the minimum and maximum values used to construct a box-plot, another important element that can also be employed to obtain a box-plot is the interquartile range (IQR), as denoted below:
There are several types of indices used for the analysis of nominal data. Several are standard statistics that are used elsewhere - range, standard deviation, variance, mean deviation, coefficient of variation, median absolute deviation, interquartile range and quartile deviation.
The QUARTILE function is a legacy function from Excel 2007 or earlier, giving the same output of the function QUARTILE.INC. In the function, array is the dataset of numbers that is being analyzed and quart is any of the following 5 values depending on which quartile is being calculated. [8]
The interquartile mean (IQM) (or midmean) is a statistical measure of central tendency based on the truncated mean of the interquartile range.The IQM is very similar to the scoring method used in sports that are evaluated by a panel of judges: discard the lowest and the highest scores; calculate the mean value of the remaining scores.
Its standard deviation is 32.9 and its average is 27.9, giving a coefficient of variation of 32.9 / 27.9 = 1.18; In these examples, we will take the values given as the entire population of values. The data set [100, 100, 100] has a population standard deviation of 0 and a coefficient of variation of 0 / 100 = 0