Search results
Results from the WOW.Com Content Network
The following demonstrates three means of populating a mutable dictionary: the Add method, which adds a key and value and throws an exception if the key already exists in the dictionary; assigning to the indexer, which overwrites any existing value, if present; and
In mathematical terms, an associative array is a function with finite domain. [1] It supports 'lookup', 'remove', and 'insert' operations. The dictionary problem is the classic problem of designing efficient data structures that implement associative arrays. [2] The two major solutions to the dictionary problem are hash tables and search trees.
Python sets are very much like mathematical sets, and support operations like set intersection and union. Python also features a frozenset class for immutable sets, see Collection types. Dictionaries (class dict) are mutable mappings tying keys and corresponding values. Python has special syntax to create dictionaries ({key: value})
A small phone book as a hash table. In computer science, a hash table is a data structure that implements an associative array, also called a dictionary or simply map; an associative array is an abstract data type that maps keys to values. [2]
In Python and Ruby, the same asterisk notation used in defining variadic functions is used for calling a function on a sequence and array respectively: func ( * args ) Python originally had an apply function, but this was deprecated in favour of the asterisk in 2.3 and removed in 3.0.
Following Lisp, other high-level programming languages which feature linked lists as primitive data structures have adopted an append. To append lists, as an operator, Haskell uses ++, OCaml uses @. Other languages use the + or ++ symbols to nondestructively concatenate a string, list, or array.
Python dictionaries (a form of associative array) can also be directly iterated over, when the dictionary keys are returned; or the items() method of a dictionary can be iterated over where it yields corresponding key,value pairs as a tuple:
By default, a Pandas index is a series of integers ascending from 0, similar to the indices of Python arrays. However, indices can use any NumPy data type, including floating point, timestamps, or strings. [4]: 112 Pandas' syntax for mapping index values to relevant data is the same syntax Python uses to map dictionary keys to values.