Search results
Results from the WOW.Com Content Network
Toggle the table of contents. List of boiling and freezing information of solvents. 7 languages. ... Water: 100.00 0.512 0.00 –1.86
Fahrenheit Celsius Réaumur Temperature Absolute zero: 0 K 0 °Ra −459.67 °F −273.15 °C -218.52 °Ré Freezing point of brine [a] 255.37 K 459.67 °Ra 0 °F −17.78 °C −14.224 °Ré Freezing point of water [b] 273.15 K 491.67 °Ra 32 °F 0 °C 0 °Ré Boiling point of water [c] 373.1339 K 671.64102 °Ra 211.97102 °F 99.9839 °C
In the following table, material data are given with a pressure of 611.7 Pa (equivalent to 0.006117 bar). Up to a temperature of 0.01 °C, the triple point of water, water normally exists as ice, except for supercooled water, for which one data point is tabulated here. At the triple point, ice can exist together with both liquid water and vapor.
For the equivalent in degrees Fahrenheit °F, see: Boiling points of the elements (data page) Some values are predictions Primordial From decay Synthetic Border shows natural occurrence of the element
Water: 0 Ice: Ammonium chloride-5 0.3 to 1 ratio of salt to ice. Liquid N 2: Aniline-6 Ice: Sodium thiosulfate pentahydrate-8 1.1 to 1 ratio of salt to ice. Ice: Calcium chloride hexahydrate-10 1 to 2.5 ratio of salt to ice. Liquid N 2: Ethylene glycol-10 Ice: Acetone-10 1 to 1 ratio of acetone to ice. Liquid N 2: Cycloheptane-12 Dry ice ...
For instance, precise measurements show that the boiling point of VSMOW water under one standard atmosphere of pressure is actually 373.1339 K (99.9839 °C) when adhering strictly to the two-point definition of thermodynamic temperature. When calibrated to ITS–90, where one must interpolate between the defining points of gallium and indium ...
In technical terms, the dew point is the temperature at which the water vapor in a sample of air at constant barometric pressure condenses into liquid water at the same rate at which it evaporates. [7] At temperatures below the dew point, the rate of condensation will be greater than that of evaporation, forming more liquid water.
In the above equation, T F is the normal freezing point of the pure solvent (273 K for water, for example); a liq is the activity of the solvent in the solution (water activity for aqueous solution); ΔH fus T F is the enthalpy change of fusion of the pure solvent at T F, which is 333.6 J/g for water at 273 K; ΔC fus p is the difference ...