Search results
Results from the WOW.Com Content Network
Generally the head losses (potential differences) at each node are neglected, and a solution is sought for the steady-state flows on the network, taking into account the pipe specifications (lengths and diameters), pipe friction properties and known flow rates or head losses. The steady-state flows on the network must satisfy two conditions:
ΔE is the fluid's mechanical energy loss, ξ is an empirical loss coefficient, which is dimensionless and has a value between zero and one, 0 ≤ ξ ≤ 1, ρ is the fluid density, v 1 and v 2 are the mean flow velocities before and after the expansion. In case of an abrupt and wide expansion, the loss coefficient is equal to one. [1]
The friction loss is customarily given as pressure loss for a given duct length, Δp / L, in units of (US) inches of water for 100 feet or (SI) kg / m 2 / s 2. For specific choices of duct material, and assuming air at standard temperature and pressure (STP), standard charts can be used to calculate the expected friction loss.
Minor losses in pipe flow are a major part in calculating the flow, pressure, or energy reduction in piping systems. Liquid moving through pipes carries momentum and energy due to the forces acting upon it such as pressure and gravity.
The head loss Δh (or h f) expresses the pressure loss due to friction in terms of the equivalent height of a column of the working fluid, so the pressure drop is =, where: Δh = The head loss due to pipe friction over the given length of pipe (SI units: m); [b]
Discover the best free online games at AOL.com - Play board, card, casino, puzzle and many more online games while chatting with others in real-time.
The Hardy Cross method is an application of continuity of flow and continuity of potential to iteratively solve for flows in a pipe network. [1] In the case of pipe flow, conservation of flow means that the flow in is equal to the flow out at each junction in the pipe.
Hydraulic jump in a rectangular channel, also known as classical jump, is a natural phenomenon that occurs whenever flow changes from supercritical to subcritical flow. In this transition, the water surface rises abruptly, surface rollers are formed, intense mixing occurs, air is entrained, and often a large amount of energy is dissipated.