Search results
Results from the WOW.Com Content Network
So, in short: weak duality states that any solution feasible for the dual problem is an upper bound to the solution of the primal problem. Weak duality is in contrast to strong duality, which states that the primal optimal objective and the dual optimal objective are equal. Strong duality only holds in certain cases. [2]
The strong duality theorem says that if one of the two problems has an optimal solution, so does the other one and that the bounds given by the weak duality theorem are tight, i.e.: max x c T x = min y b T y. The strong duality theorem is harder to prove; the proofs usually use the weak duality theorem as a sub-routine.
The duality gap is zero if and only if strong duality holds. Otherwise the gap is strictly positive and weak duality holds. [5] In computational optimization, another "duality gap" is often reported, which is the difference in value between any dual solution and the value of a feasible but suboptimal iterate for the primal problem.
The strong duality theorem states that if the primal has an optimal solution, x *, then the dual also has an optimal solution, y *, and c T x * =b T y *. A linear program can also be unbounded or infeasible. Duality theory tells us that if the primal is unbounded then the dual is infeasible by the weak duality theorem.
In mathematical optimization, Wolfe duality, named after Philip Wolfe, is type of dual problem in which the objective function and constraints are all differentiable functions. Using this concept a lower bound for a minimization problem can be found because of the weak duality principle.
Jenny Slate’s new book is almost here, and it’s a meditation on motherhood like you’ve never read one before.. Lifeform, out Tuesday, Oct. 22 from Little, Brown and Company, is a collection ...
Montonen–Olive duality or electric–magnetic duality is the oldest known example of strong–weak duality [note 1] or S-duality according to current terminology. [note 2] It generalizes the electro-magnetic symmetry of Maxwell's equations by stating that magnetic monopoles, which are usually viewed as emergent quasiparticles that are "composite" (i.e. they are solitons or topological ...
This alternative "duality gap" quantifies the discrepancy between the value of a current feasible but suboptimal iterate for the primal problem and the value of the dual problem; the value of the dual problem is, under regularity conditions, equal to the value of the convex relaxation of the primal problem: The convex relaxation is the problem ...