enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Degree of reaction - Wikipedia

    en.wikipedia.org/wiki/Degree_of_Reaction

    The degree of reaction contributes to the stage efficiency and thus used as a design parameter. Stages having 50% degree of reaction are used where the pressure drop is equally shared by the stator and the rotor for a turbine. Figure 4. Velocity triangle for Degree of Reaction = 1/2 in a turbine

  3. Francis turbine - Wikipedia

    en.wikipedia.org/wiki/Francis_turbine

    The Francis turbine is a type of water turbine. It is an inward-flow reaction turbine that combines radial and axial flow concepts. Francis turbines are the most common water turbine in use today, and can achieve over 95% efficiency. [1] The process of arriving at the modern Francis runner design took from 1848 to approximately 1920. [1]

  4. Water turbine - Wikipedia

    en.wikipedia.org/wiki/Water_turbine

    Newton's third law describes the transfer of energy for reaction turbines. Most water turbines in use are reaction turbines and are used in low (<30 m or 100 ft) and medium (30–300 m or 100–1,000 ft) head applications. In reaction turbine, pressure drop occurs in both fixed and moving blades. It is largely used in dam and large power plants.

  5. Radial turbine - Wikipedia

    en.wikipedia.org/wiki/Radial_turbine

    Whereas for an axial turbine the rotor is 'impacted' by the fluid flow, for a radial turbine, the flow is smoothly oriented perpendicular to the rotation axis, and it drives the turbine in the same way water drives a watermill. The result is less mechanical stress (and less thermal stress, in case of hot working fluids) which enables a radial ...

  6. Turbomachinery - Wikipedia

    en.wikipedia.org/wiki/Turbomachinery

    Practical hydroelectric water turbines and steam turbines did not appear until the 1880s. Gas turbines appeared in the 1930s. The first impulse type turbine was created by Carl Gustaf de Laval in 1883. This was closely followed by the first practical reaction type turbine in 1884, built by Charles Parsons.

  7. Steam turbine - Wikipedia

    en.wikipedia.org/wiki/Steam_turbine

    In the reaction turbine, the rotor blades themselves are arranged to form convergent nozzles. This type of turbine makes use of the reaction force produced as the steam accelerates through the nozzles formed by the stator. Steam is directed onto the rotor by the fixed vanes of the stator. It leaves the stator as a jet that fills the entire ...

  8. Axial turbine - Wikipedia

    en.wikipedia.org/wiki/Axial_turbine

    The losses occur in an actual turbine due to disc and bearing friction. Figure shows the energy flow diagram for the impulse stage of an axial turbine. Numbers in brackets indicate the order of energy or loss corresponding to 100 units of isentropic work (h 01 – h 03ss). Energy flow diagram for the impulse stage of an axial turbine

  9. Kaplan turbine - Wikipedia

    en.wikipedia.org/wiki/Kaplan_turbine

    A Bonneville Dam Kaplan turbine after 61 years of service. The Kaplan turbine is a propeller-type water turbine which has adjustable blades. It was developed in 1913 by Austrian professor Viktor Kaplan, [1] who combined automatically adjusted propeller blades with automatically adjusted wicket gates to achieve efficiency over a wide range of flow and water level.