enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Greatest common divisor - Wikipedia

    en.wikipedia.org/wiki/Greatest_common_divisor

    Numbers p and q like this can be computed with the extended Euclidean algorithm. gcd(a, 0) = | a |, for a ≠ 0, since any number is a divisor of 0, and the greatest divisor of a is | a |. [2] [5] This is usually used as the base case in the Euclidean algorithm. If a divides the product b⋅c, and gcd(a, b) = d, then a/d divides c.

  3. GCD matrix - Wikipedia

    en.wikipedia.org/wiki/GCD_matrix

    In mathematics, a greatest common divisor matrix (sometimes abbreviated as GCD matrix) is a matrix that may also be referred to as Smith's matrix. The study was initiated by H.J.S. Smith (1875). A new inspiration was begun from the paper of Bourque & Ligh (1992). This led to intensive investigations on singularity and divisibility of GCD type ...

  4. Table of divisors - Wikipedia

    en.wikipedia.org/wiki/Table_of_divisors

    Download as PDF; Printable version; ... a superior highly composite number has a ratio between its number of divisors and itself raised ... 18, 27, 36, 54, 81, 108 ...

  5. Lehmer's GCD algorithm - Wikipedia

    en.wikipedia.org/wiki/Lehmer's_GCD_algorithm

    Lehmer's GCD algorithm, named after Derrick Henry Lehmer, is a fast GCD algorithm, an improvement on the simpler but slower Euclidean algorithm. It is mainly used for big integers that have a representation as a string of digits relative to some chosen numeral system base , say β = 1000 or β = 2 32 .

  6. Euclidean algorithm - Wikipedia

    en.wikipedia.org/wiki/Euclidean_algorithm

    The Euclidean algorithm is based on the principle that the greatest common divisor of two numbers does not change if the larger number is replaced by its difference with the smaller number. For example, 21 is the GCD of 252 and 105 (as 252 = 21 × 12 and 105 = 21 × 5), and the same number 21 is also the GCD of 105 and 252 − 105 = 147. Since ...

  7. Binary GCD algorithm - Wikipedia

    en.wikipedia.org/wiki/Binary_GCD_algorithm

    Visualisation of using the binary GCD algorithm to find the greatest common divisor (GCD) of 36 and 24. Thus, the GCD is 2 2 × 3 = 12.. The binary GCD algorithm, also known as Stein's algorithm or the binary Euclidean algorithm, [1] [2] is an algorithm that computes the greatest common divisor (GCD) of two nonnegative integers.

  8. Refactorable number - Wikipedia

    en.wikipedia.org/wiki/Refactorable_number

    A refactorable number or tau number is an integer n that is divisible by the count of its divisors, or to put it algebraically, n is such that (). The first few refactorable numbers are listed in (sequence A033950 in the OEIS ) as

  9. List of mathematical abbreviations - Wikipedia

    en.wikipedia.org/wiki/List_of_mathematical...

    lcm – lowest common multiple (a.k.a. least common multiple) of two numbers. LCHS – locally compact Hausdorff second countable. ld – binary logarithm (log 2). (Also written as lb.) lsc – lower semi-continuity. lerp – linear interpolation. [5] lg – common logarithm (log 10) or binary logarithm (log 2). LHS – left-hand side of an ...