Search results
Results from the WOW.Com Content Network
In genomics, the gamma distribution was applied in peak calling step (i.e., in recognition of signal) in ChIP-chip [41] and ChIP-seq [42] data analysis. In Bayesian statistics, the gamma distribution is widely used as a conjugate prior. It is the conjugate prior for the precision (i.e. inverse of the variance) of a normal distribution.
Since many distributions commonly used for parametric models in survival analysis (such as the exponential distribution, the Weibull distribution and the gamma distribution) are special cases of the generalized gamma, it is sometimes used to determine which parametric model is appropriate for a given set of data. [1]
The sum of n exponential (β) random variables is a gamma (n, β) random variable. Since n is an integer, the gamma distribution is also a Erlang distribution. The sum of the squares of N standard normal random variables has a chi-squared distribution with N degrees of freedom.
In probability theory and statistics, the normal-gamma distribution (or Gaussian-gamma distribution) is a bivariate four-parameter family of continuous probability distributions. It is the conjugate prior of a normal distribution with unknown mean and precision .
The GIG distribution is also the basis for a number of wrapped distributions in the wrapped gamma family. [12] As being a special case of the generalized chi-squared distribution, there are many other applications; for example, in renewal theory [1] and in multi-antenna wireless communications. [13] [14] [15] [16]
The variance-gamma distribution, generalized Laplace distribution [2] or Bessel function distribution [2] is a continuous probability distribution that is defined as the normal variance-mean mixture where the mixing density is the gamma distribution. The tails of the distribution decrease more slowly than the normal distribution. It is ...
Also known as the (Moran-)Gamma Process, [1] the gamma process is a random process studied in mathematics, statistics, probability theory, and stochastics. The gamma process is a stochastic or random process consisting of independently distributed gamma distributions where N ( t ) {\displaystyle N(t)} represents the number of event occurrences ...
In probability theory and statistics, the inverse gamma distribution is a two-parameter family of continuous probability distributions on the positive real line, which is the distribution of the reciprocal of a variable distributed according to the gamma distribution. Perhaps the chief use of the inverse gamma distribution is in Bayesian ...