Search results
Results from the WOW.Com Content Network
By convention, the end of the sequence at which elements are added is called the back, tail, or rear of the queue, and the end at which elements are removed is called the head or front of the queue, analogously to the words used when people line up to wait for goods or services.
In computer science, a double-ended queue (abbreviated to deque, / d ɛ k / DEK [1]) is an abstract data type that generalizes a queue, for which elements can be added to or removed from either the front (head) or back (tail). [2] It is also often called a head-tail linked list, though properly this refers to a specific data structure ...
For the stack, priority queue, deque, and DEPQ types, peek can be implemented in terms of pop and push (if done at same end). For stacks and deques this is generally efficient, as these operations are O (1) in most implementations, and do not require memory allocation (as they decrease the size of the data) – the two ends of a deque each ...
In computer programming, a callback is a function that is stored as data (a reference) and designed to be called by another function – often back to the original abstraction layer. A function that accepts a callback parameter may be designed to call back before returning to its caller which is known as synchronous or blocking.
The priority queue can be further improved by not moving the remaining elements of the result set directly back into the local queues after a k_extract-min operation. This saves moving elements back and forth all the time between the result set and the local queues. By removing several elements at once a considerable speedup can be reached.
Provides FIFO queue interface in terms of push / pop / front / back operations. Any sequence supporting operations front (), back (), push_back (), and pop_front can be used to instantiate queue (e.g. list and deque). priority queue: Provides priority queue interface in terms of push / pop / top operations (the element with the highest priority ...
Here, the list [0..] represents , x^2>3 represents the predicate, and 2*x represents the output expression.. List comprehensions give results in a defined order (unlike the members of sets); and list comprehensions may generate the members of a list in order, rather than produce the entirety of the list thus allowing, for example, the previous Haskell definition of the members of an infinite list.
For lists with a front and a back (such as a queue), one stores a reference to the last node in the list. The next node after the last node is the first node. Elements can be added to the back of the list and removed from the front in constant time. Circularly linked lists can be either singly or doubly linked.