Search results
Results from the WOW.Com Content Network
Using the usual notations for a triangle (see the figure at the upper right), where a, b, c are the lengths of the three sides, A, B, C are the vertices opposite those three respective sides, α, β, γ are the corresponding angles at those vertices, s is the semiperimeter, that is, s = a + b + c / 2 , and r is the radius of the inscribed circle, the law of cotangents states that
In physics, there are equations in every field to relate physical quantities to each other and perform calculations. Entire handbooks of equations can only summarize most of the full subject, else are highly specialized within a certain field. Physics is derived of formulae only.
Taking L to be the x-axis, the line integral between consecutive vertices (x i,y i) and (x i+1,y i+1) is given by the base times the mean height, namely (x i+1 − x i)(y i + y i+1)/2. The sign of the area is an overall indicator of the direction of traversal, with negative area indicating counterclockwise traversal.
In trigonometry, the law of tangents or tangent rule [1] is a statement about the relationship between the tangents of two angles of a triangle and the lengths of the opposing sides. In Figure 1, a , b , and c are the lengths of the three sides of the triangle, and α , β , and γ are the angles opposite those three respective sides.
≡ 1 ft 3 /min = 4.719 474 432 × 10 −4 m 3 /s: cubic foot per second ft 3 /s ≡ 1 ft 3 /s = 0.028 316 846 592 m 3 /s: cubic inch per minute in 3 /min ≡ 1 in 3 /min = 2.731 177 3 × 10 −7 m 3 /s cubic inch per second in 3 /s ≡ 1 in 3 /s = 1.638 7064 × 10 −5 m 3 /s: cubic metre per second (SI unit) m 3 /s ≡ 1 m 3 /s = 1 m 3 /s ...
In geometry, the Conway triangle notation, named after John Horton Conway, allows trigonometric functions of a triangle to be managed algebraically. Given a reference triangle whose sides are a, b and c and whose corresponding internal angles are A, B, and C then the Conway triangle notation is simply represented as follows:
In this case the volume of the band is the volume of the whole sphere, which matches the formula given above. An early study of this problem was written by 17th-century Japanese mathematician Seki Kōwa. According to Smith & Mikami (1914), Seki called this solid an arc-ring, or in Japanese kokan or kokwan. [1]
where C is the circumference of a circle, d is the diameter, and r is the radius.More generally, = where L and w are, respectively, the perimeter and the width of any curve of constant width.