Search results
Results from the WOW.Com Content Network
Deamination is the removal of an amino group from a molecule. [1] Enzymes that catalyse this reaction are called deaminases. In the human body, deamination takes place primarily in the liver; however, it can also occur in the kidney. In situations of excess protein intake, deamination is used to break down amino acids for energy.
Oxidative deamination is a form of deamination that generates α-keto acids and other oxidized products from amine-containing compounds, and occurs primarily in the liver. [1] Oxidative deamination is stereospecific, meaning it contains different stereoisomers as reactants and products; this process is either catalyzed by L or D- amino acid ...
The deamination of adenosine to inosine disrupts and destabilizes the dsRNA base pairing, therefore rendering that particular dsRNA less able to produce siRNA, which interferes with the RNAi pathway. The wobble base pairing causes deaminated RNA to have a unique but different structure, which may be related to the inhibition of the initiation ...
This underrepresentation is a consequence of the high mutation rate of methylated CpG sites: the spontaneously occurring deamination of a methylated cytosine results in a thymine, and the resulting G:T mismatched bases are often improperly resolved to A:T; whereas the deamination of unmethylated cytosine results in a uracil, which as a foreign ...
The cycle comprises three enzyme-catalysed reactions. The first stage is the deamination of the purine nucleotide adenosine monophosphate (AMP) to form inosine monophosphate (IMP), catalysed by the enzyme AMP deaminase:
The deamination of cytosine to uracil at the ends of DNA molecules has become a way of authentication. During DNA sequencing, the DNA polymerases will incorporate an adenine (A) across from the uracil (U), leading to cytosine (C) to thymine (T) substitutions in the aDNA data. [ 52 ]
Molecular biology is the study of molecular underpinnings of the biological phenomena, focusing on molecular synthesis, modification, mechanisms and interactions. The central dogma of molecular biology , where genetic material is transcribed into RNA and then translated into protein , despite being oversimplified, still provides a good starting ...
More specifically, the catalytic domain is a zinc dependent cytidine deaminase domain and is essential for cytidine deamination. The positively charged zinc ion in the catalytic domain attracts to the partial-negative charge of RNA. In the case of APOBEC-1, the mRNA transcript of intestinal apolipoprotein B is altered.