enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Bragg's law - Wikipedia

    en.wikipedia.org/wiki/Bragg's_law

    where m is the Bragg order (a positive integer), λ B the diffracted wavelength, Λ the fringe spacing of the grating, θ the angle between the incident beam and the normal (N) of the entrance surface and φ the angle between the normal and the grating vector (K G). Radiation that does not match Bragg's law will pass through the VBG undiffracted.

  3. X-ray diffraction - Wikipedia

    en.wikipedia.org/wiki/X-ray_diffraction

    William Lawrence Bragg proposed a model where the incoming X-rays are scattered specularly (mirror-like) from each plane; from that assumption, X-rays scattered from adjacent planes will combine constructively (constructive interference) when the angle θ between the plane and the X-ray results in a path-length difference that is an integer ...

  4. Dynamical theory of diffraction - Wikipedia

    en.wikipedia.org/.../Dynamical_theory_of_diffraction

    J. Als-Nielsen, D. McMorrow: Elements of Modern X-ray physics. Wiley, 2001 (chapter 5: diffraction by perfect crystals). André Authier: Dynamical theory of X-ray diffraction. IUCr monographs on crystallography, no. 11. Oxford University Press (1st edition 2001/ 2nd edition 2003). ISBN 0-19-852892-2.

  5. Clay mineral X-ray diffraction - Wikipedia

    en.wikipedia.org/wiki/Clay_Mineral_X-Ray_Diffraction

    D positions are calculated using Bragg’s law but because clay mineral analysis is one dimensional, l can substitute n, making the equation l λ = 2d sin Θ. When measuring the x-ray diffraction of clays, d is constant and λ is the known wavelength from the x-ray source, so the distance from one 00l peak to another is equal. [3]

  6. Wide-angle X-ray scattering - Wikipedia

    en.wikipedia.org/wiki/Wide-angle_X-ray_scattering

    In X-ray crystallography, wide-angle X-ray scattering (WAXS) or wide-angle X-ray diffraction (WAXD) is the analysis of Bragg peaks scattered to wide angles, which (by Bragg's law) are caused by sub-nanometer-sized structures. [1] It is an X-ray-diffraction [2] method

  7. Lawrence Bragg - Wikipedia

    en.wikipedia.org/wiki/Lawrence_Bragg

    Portrait of William Lawrence Bragg taken when he was around 40 years old. Sir William Lawrence Bragg (31 March 1890 – 1 July 1971), known as Lawrence Bragg, was an Australian-born British physicist and X-ray crystallographer, discoverer (1912) of Bragg's law of X-ray diffraction, which is basic for the determination of crystal structure.

  8. Timeline of crystallography - Wikipedia

    en.wikipedia.org/wiki/Timeline_of_crystallography

    1908 - Bernhard Walter and Robert Wichard Pohl observed X-ray diffraction from a slit. [46] [47] 1912 - Max von Laue discovered diffraction patterns from crystals in an x-ray beam. [48] 1912 - Bragg diffraction, expressed through Bragg's law, is first presented by Lawrence Bragg on 11 November 1912 to the Cambridge Philosophical Society. [49]

  9. Structure factor - Wikipedia

    en.wikipedia.org/wiki/Structure_factor

    The structure factor is a critical tool in the interpretation of scattering patterns (interference patterns) obtained in X-ray, electron and neutron diffraction experiments. Confusingly, there are two different mathematical expressions in use, both called 'structure factor'.