Search results
Results from the WOW.Com Content Network
where b is the number base (10 for decimal), and p is a prime that does not divide b. (Primes p that give cyclic numbers in base b are called full reptend primes or long primes in base b). For example, the case b = 10, p = 7 gives the cyclic number 142857, and the case b = 12, p = 5 gives the cyclic number 2497.
Therefore, the base b expansion of / repeats the digits of the corresponding cyclic number infinitely, as does that of / with rotation of the digits for any a between 1 and p − 1. The cyclic number corresponding to prime p will possess p − 1 digits if and only if p is a full reptend prime.
A cyclic number [1] [2] is a natural number n such that n and φ(n) are coprime. Here φ is Euler's totient function. An equivalent definition is that a number n is cyclic if and only if any group of order n is cyclic. [3] Any prime number is clearly cyclic. All cyclic numbers are square-free. [4] Let n = p 1 p 2 …
A full reptend prime, full repetend prime, proper prime [7]: 166 or long prime in base b is an odd prime number p such that the Fermat quotient = (where p does not divide b) gives a cyclic number with p − 1 digits.
For premium support please call: 800-290-4726 more ways to reach us. Sign in. Mail. ... Online Crossword & Sudoku Puzzle Answers for 08/11/2024 - USA TODAY. Show comments. Advertisement ...
Functions with compact support on a topological space are those whose closed support is a compact subset of . If X {\displaystyle X} is the real line, or n {\displaystyle n} -dimensional Euclidean space, then a function has compact support if and only if it has bounded support , since a subset of R n {\displaystyle \mathbb {R} ^{n}} is compact ...
A number n is called a cyclic number if Z/nZ is the only group of order n, which is true exactly when gcd(n, φ(n)) = 1. [13] The sequence of cyclic numbers include all primes, but some are composite such as 15. However, all cyclic numbers are odd except 2. The cyclic numbers are:
Main page; Contents; Current events; Random article; About Wikipedia; Contact us; Donate; Help; Learn to edit; Community portal; Recent changes; Upload file