Search results
Results from the WOW.Com Content Network
For many classes of graphs, a maximum weight independent set may be found in polynomial time. Famous examples are claw-free graphs, [11] P 5-free graphs [12] and perfect graphs. [13] For chordal graphs, a maximum weight independent set can be found in linear time. [14]
The Cauchy distribution does not have finite moments of order greater than or equal to one; only fractional absolute moments exist. [1] The Cauchy distribution has no moment generating function . In mathematics , it is closely related to the Poisson kernel , which is the fundamental solution for the Laplace equation in the upper half-plane .
In this case, a single limit does not exist because the one-sided limits, and + exist and are finite, but are not equal: since, +, the limit does not exist. Then, x 0 {\displaystyle x_{0}} is called a jump discontinuity , step discontinuity , or discontinuity of the first kind .
The first three functions have points for which the limit does not exist, while the function = is not defined at =, but its limit does exist. respectively. If these limits exist at p and are equal there, then this can be referred to as the limit of f(x) at p. [7] If the one-sided limits exist at p, but are unequal, then there is no limit at ...
In mathematics, the limit comparison test (LCT) (in contrast with the related direct comparison test) is a method of testing for the convergence of an infinite series. Statement [ edit ]
Given a sequence of distributions , its limit is the distribution given by [] = []for each test function , provided that distribution exists.The existence of the limit means that (1) for each , the limit of the sequence of numbers [] exists and that (2) the linear functional defined by the above formula is continuous with respect to the topology on the space of test functions.
In mathematics, the nth-term test for divergence [1] is a simple test for the divergence of an infinite series: If lim n → ∞ a n ≠ 0 {\displaystyle \lim _{n\to \infty }a_{n}\neq 0} or if the limit does not exist, then ∑ n = 1 ∞ a n {\displaystyle \sum _{n=1}^{\infty }a_{n}} diverges.
The limit of this expression as a → −∞ and b → ∞ does not exist: if the limits are taken so that a = −b, then the limit is zero, while if the constraint 2a = −b is taken, then the limit is ln(2).