Search results
Results from the WOW.Com Content Network
The List Update or the List Access problem is a simple model used in the study of competitive analysis of online algorithms.Given a set of items in a list where the cost of accessing an item is proportional to its distance from the head of the list, e.g. a linked List, and a request sequence of accesses, the problem is to come up with a strategy of reordering the list so that the total cost of ...
Specific applications of search algorithms include: Problems in combinatorial optimization, such as: . The vehicle routing problem, a form of shortest path problem; The knapsack problem: Given a set of items, each with a weight and a value, determine the number of each item to include in a collection so that the total weight is less than or equal to a given limit and the total value is as ...
Note that the final result of an insertion sort is optimum, i.e., a correctly sorted list. For many problems, online algorithms cannot match the performance of offline algorithms. If the ratio between the performance of an online algorithm and an optimal offline algorithm is bounded, the online algorithm is called competitive. [1]
If the heuristic h satisfies the additional condition h(x) ≤ d(x, y) + h(y) for every edge (x, y) of the graph (where d denotes the length of that edge), then h is called monotone, or consistent. With a consistent heuristic, A* is guaranteed to find an optimal path without processing any node more than once and A* is equivalent to running ...
As a baseline algorithm, selection of the th smallest value in a collection of values can be performed by the following two steps: . Sort the collection; If the output of the sorting algorithm is an array, retrieve its th element; otherwise, scan the sorted sequence to find the th element.
Interpolation search is an algorithm for searching for a key in an array that has been ordered by numerical values assigned to the keys (key values).It was first described by W. W. Peterson in 1957. [1]
Main page; Contents; Current events; Random article; About Wikipedia; Contact us; Pages for logged out editors learn more
The divide-and-conquer technique is the basis of efficient algorithms for many problems, such as sorting (e.g., quicksort, merge sort), multiplying large numbers (e.g., the Karatsuba algorithm), finding the closest pair of points, syntactic analysis (e.g., top-down parsers), and computing the discrete Fourier transform . [1]