enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Random forest - Wikipedia

    en.wikipedia.org/wiki/Random_forest

    Random forests or random decision forests is an ensemble learning method for classification, regression and other tasks that works by creating a multitude of decision trees during training. For classification tasks, the output of the random forest is the class selected by most trees.

  3. Jackknife variance estimates for random forest - Wikipedia

    en.wikipedia.org/wiki/Jackknife_Variance...

    E-mail spam problem is a common classification problem, in this problem, 57 features are used to classify spam e-mail and non-spam e-mail. Applying IJ-U variance formula to evaluate the accuracy of models with m=15,19 and 57.

  4. Decision tree learning - Wikipedia

    en.wikipedia.org/wiki/Decision_tree_learning

    Rotation forest – in which every decision tree is trained by first applying principal component analysis (PCA) on a random subset of the input features. [ 13 ] A special case of a decision tree is a decision list , [ 14 ] which is a one-sided decision tree, so that every internal node has exactly 1 leaf node and exactly 1 internal node as a ...

  5. Out-of-bag error - Wikipedia

    en.wikipedia.org/wiki/Out-of-bag_error

    When this process is repeated, such as when building a random forest, many bootstrap samples and OOB sets are created. The OOB sets can be aggregated into one dataset, but each sample is only considered out-of-bag for the trees that do not include it in their bootstrap sample.

  6. Ensemble learning - Wikipedia

    en.wikipedia.org/wiki/Ensemble_learning

    Because three of the four predict the positive class, the ensemble's overall classification is positive. Random forests like the one shown are a common application of bagging. An example of the aggregation process for an ensemble of decision trees. Individual classifications are aggregated, and an overall classification is derived.

  7. Bootstrap aggregating - Wikipedia

    en.wikipedia.org/wiki/Bootstrap_aggregating

    The random forest classifier operates with a high accuracy and speed. [11] Random forests are much faster than decision trees because of using a smaller dataset. To recreate specific results, it is necessary to keep track of the exact random seed used to generate the bootstrap sets.

  8. Random subspace method - Wikipedia

    en.wikipedia.org/wiki/Random_subspace_method

    The random subspace method has been used for decision trees; when combined with "ordinary" bagging of decision trees, the resulting models are called random forests. [5] It has also been applied to linear classifiers, [6] support vector machines, [7] nearest neighbours [8] [9] and other types of classifiers.

  9. Category:Classification algorithms - Wikipedia

    en.wikipedia.org/wiki/Category:Classification...

    Margin classifier; Margin-infused relaxed algorithm; Mathematics of artificial neural networks; Multi-label classification; Multiclass classification; Multifactor dimensionality reduction; Multilayer perceptron; Multinomial logistic regression; Multiple discriminant analysis; Multispectral pattern recognition