Search results
Results from the WOW.Com Content Network
Fault detection, isolation, and recovery (FDIR) is a subfield of control engineering which concerns itself with monitoring a system, identifying when a fault has occurred, and pinpointing the type of fault and its location. Two approaches can be distinguished: A direct pattern recognition of sensor readings that indicate a fault and an analysis ...
The construction of a failure detector is an essential, but a very difficult problem that occurred in the development of the fault-tolerant component in a distributed computer system. As a result, the failure detector was invented because of the need for detecting errors in the massive information transaction in distributed computing systems.
A fault coverage test passes when at least a specified percentage of all possible faults can be detected. If it does not pass, at least three options are possible. First, the designer can augment or otherwise improve the vector set, perhaps by using a more effective automatic test pattern generation tool.
A fault tree diagram. Fault tree analysis (FTA) is a type of failure analysis in which an undesired state of a system is examined. This analysis method is mainly used in safety engineering and reliability engineering to understand how systems can fail, to identify the best ways to reduce risk and to determine (or get a feeling for) event rates of a safety accident or a particular system level ...
An alarm is a persistent indication of a fault that clears only when the triggering condition has been resolved. A current list of problems occurring on the network component is often kept in the form of an active alarm list such as is defined in RFC 3877, the Alarm MIB. A list of cleared faults is also maintained by most network management ...
The hardware fault injection method consists in real electrical signals injection into the DUT (devices under testing) in order to disturb it, supposedly well working, at hardware low level, and deceive the control - detection chain (if present) in order to see how and if the fault management strategy is implemented.
ATPG (acronym for both automatic test pattern generation and automatic test pattern generator) is an electronic design automation method or technology used to find an input (or test) sequence that, when applied to a digital circuit, enables automatic test equipment to distinguish between the correct circuit behavior and the faulty circuit behavior caused by defects.
The need to control software fault is one of the most rising challenges facing software industries today. Fault tolerance must be a key consideration in the early stage of software development. There exist different mechanisms for software fault tolerance, among which: Recovery blocks; N-version software; Self-checking software